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Abstract

Laser scanning sensors mounted on drones enable on-demand quantification of forest structure through the collection of high-density
point clouds (500+ points m−2). These point clouds facilitate the detection of individual trees enabling the quantification of growth-
related variables within a stand that can inform precision management. We present a methodology to link incremental growth data
obtained from tree cores with crown models derived from drone laser scanning, quantifying the relative growth condition of individual
trees and their neighbours. We stem-mapped 815 trees across five stands in north-central British Columbia, Canada of which 16%
were cored to quantify recent basal area growth. Point clouds from drone laser scanning and orthomosaic imagery were used to locate
trees, model three-dimensional crown features, and derive competition metrics describing the relative distribution of crown sizes.
Local access to water and light were simulated using topographic wetness and potential solar irradiance indices derived from high-
resolution terrain and surface models. Wall-to-wall predictions of recent basal area growth were produced from the best-performing
model and summarized across a grid alongside a tree-level competition index. Overall, crown volume was most strongly correlated
with observed differences in 5-year basal area increment (R2 = 0.70, P < .001). Competition and solar irradiance metrics were significant
as univariate predictors (P < .001) but nonsignificant when included in multivariate models with crown volume. Using predictions from
the best-performing model and laser-scanning-derived competition metrics, we present a newly developed growth competition index
to assess variability and inform commercial thinning prescription prioritization. Growth predictions, competition metrics, and the
growth competition index are summarized into maps that could be used in an operational workflow. Our methodology presents a new
capacity to capture and quantify intra-stand variation in growth by combining competition metrics and measures of recent growth
with high-density drone laser scanning data.

Introduction
Managing tree growth and competition
Trees face competition from their neighbours for limited
resources including light, soil nutrients, water, and space. Forest
inventory information can be used to derive competition indices
that quantify variations in competition pressure at both tree
and plot levels, which can be applied to inform upon antici-
pated growth rates of stem volume and basal area (Weiskittel
2011). Competition informed growth models have often been
demonstrated to be more accurate than models assuming no
competitive effect (Contreras et al. 2011; Gavilán-Acuña et al.
2022; Lorimer 1983). Forest managers through active management
can manipulate competitive drivers of tree growth and form, for
example, by applying thinning treatments that selectively remove
stems to release remnant trees from competition. Thinning
treatments can modify a stand’s growth trajectory, wood quality,
and species composition, and enhance resistance to multiple
stressors such as diseases and drought (Moreau et al. 2022).
They generally lead to increased diameter growth for remnant

trees and can potentially reduce the stand’s rotation harvest age.
Sometimes, however, thinning treatments may trigger a trade-
off between maximized tree growth and decreased overall stand
yield in the long term (Pretzsch 2020). Commercial thinning aims
to offset treatment costs by targeting valuable dominant and co-
dominant trees, while promoting growth in the remaining trees. By
reducing rotation harvest age, commercial thinning can therefore
play a crucial role in increasing the resilience of the timber harvest
land base and providing mid-rotation fibre to mitigate potential
shortages (Achim et al. 2022; Griess et al. 2019; Pinno et al. 2021b).
As a result, thinning treatments are being increasingly recognized
as an essential tool to improve stand structure and reduce density
in the extensively managed forests of North America and Europe
(D’Amato et al. 2022).

The high cost of implementing silviculture management at
large scales, including thinning, has been identified as a key
factor limiting its widespread adoption across Canadian provinces
(Pinno et al. 2021a). In addition, localized stand responses to differ-
ent intensities, timings, and patterns of thinning treatments are
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often poorly understood (Bose et al. 2018). Currently, operations
are planned and carried out based on information collected at
the stand level using ground-based plot networks. Basal area
and stem density information collected from inventory plots is
extrapolated to the stand level and used to determine appropri-
ate prescriptions, typically in consideration of local knowledge,
available growth models, and operator experience (Pavel et al.
2021). While generalized prescriptions for thinning treatments
are relatively straightforward to implement, they may fail to suf-
ficiently consider the intra-stand variability in tree competition
and growth rates that thinning aims to manipulate, especially
when applied over extensive areas, such as in North America,
where it is impractical for a forester to visually assess each tree in
the stand. Uniform thinning across a stand may fail to account
for variation in stem density and tree size across stands and
can result in inadequate release in certain areas, while sparser
areas may be overharvested. This not only reduces the overall
potential productivity of the stand but also inefficiently allocates
limited operational resources. Beyond density regulation, thinning
treatments can seek to alter species composition often through
increasing the proportion of desired tree species particularly for
long-term growth (Cameron 2002). To address intra-stand vari-
ability more effectively, precision forestry where thinning treat-
ments are planned based on clusters of sub-stand sample units
(e.g. pixels or grid cells) as opposed to a single stand level prescrip-
tion is gaining popularity (Wilhelmsson et al. 2021). Particularly
for more heterogeneous stands, this approach can better capture
within-stand variations in growth pattern, density, and species
composition that the thinning seeks to manipulate; however, a
fundamental requirement is access to reliable, spatially explicit,
fine-scale data that describe the key attributes of interest (Persson
et al. 2022).

Quantifying intra-stand variability in growth
with laser scanning
The implementation of precision thinning to optimize growth is
limited by the availability of sub-stand level data on tree compe-
tition and basal area growth rates, which would have to be spa-
tially quantified to prioritize operations. Fine-scale remote sens-
ing tools, including light detection and ranging (lidar) and optical
sensors mounted on drones, also known as unoccupied aerial
vehicles (UAVs) or remotely piloted aerial systems, have recently
become widely accessible and provide the capacity to acquire
targeted tree-level structural data, which may suit this need.
Drone laser scanning (lidar) or DLS has the potential to inform
pre-thinning assessments, by capturing stand-level variability in
tree size, competition, growth rates, stem density, and species
composition more effectively than field-based stand level inven-
tories and even area-based enhanced forest inventories (Fass-
nacht et al. 2016; Queinnec et al. 2023; Wilhelmsson et al. 2021).
To date, fine-scale remote sensing data from drones have been
successfully employed to detect and characterize individual trees
across a variety of species, stem densities, and growing condi-
tions (Chadwick et al. 2020; Goodbody et al. 2018; Leckie et al.
2017). Few studies have linked these tree locations and structural
characteristics to assess distributions of competitive status across
stands and model incremental growth over wide areas (Gavilán-
Acuña et al. 2022). Existing examples at the tree level have most
often been conducted using terrestrial laser scanning (TLS) rather
than aerial lidar datasets. For example, Pretzsch et al. (2022)
found a strong correlation between incremental growth patterns
and measurements of crown form derived from TLS data but

did not assess tree metrics such as crown volume, local com-
petition, and resource availability potential. Other recent efforts
have continued to find strong predictive power of TLS-derived
crown volume and competition metrics in explaining tree growth
patterns (Ahmed et al. 2024). Tree detection and segmentation of
DLS point clouds enables large-area estimation of tree locations
and crown extents, enabling the computation of crown volume,
competition indices derived from tree size estimates, and light
and moisture resource availability variables that can be used to
predict recent growth rates.

Crown volume refers to the three-dimensional size of a tree
crown and is conventionally estimated using field measurements
of crown width and tree height (Fernández-Sarría et al. 2013;
Filipescu and Comeau 2007). Estimates of tree size, including
crown volume, can serve as a proxy of key variables which deter-
mine growth rates including leaf area, light interception, and
overall dominance in the canopy; however, tree size estimates are
frequently only based on field measurements of tree diameter
at breast height or height (Acquah and Marshall 2020; Binkley
et al. 2013; Pretzsch 2021). Reliably quantifying crown volume
has historically been difficult to achieve accurately with non-
destructive methods and particularly at a stand scale (Zhu et al.
2021). Efforts have demonstrated the strong predictive power of
crown volume derived from remote sensing techniques, including
TLS, in explaining recent radial growth; however, these datasets
are limited in spatial coverage (Metz et al. 2013; Ronoud et al.
2022; Seidel et al. 2015; Yrttimaa et al. 2022). DLS data combine
sufficient point density to more reliably locate trees and estimate
crown volume with an improved coverage enabling the collection
of data across entire stands.

DLS data can also be applied to quantify key resource avail-
ability variables potentially contributing to tree growth including
local solar irradiance and estimates of soil water availability
(Duffy et al. 2021). High-resolution digital surface models of the
forest canopy and underlying terrain, derived from DLS point
clouds, allow the simulation of both the sun’s rays on and into the
canopy, and the topographically driven accumulation of rainfall
via for example the topographic wetness index, providing an esti-
mate of the relative availability of these resources within forest
stands. These environmental variables can then serve as proxies
of growth limiting factors and improve our capacity to predict
growth at the tree level (Mohamedou et al. 2019).

To calibrate corresponding models using DLS-derived informa-
tion, reference data for tree growth are required. Tree core samples
provide measurements of growth rates that can be connected with
tree-level metrics derived from remote sensing to explain spatial
patterns of tree growth within stands (Babst et al. 2018). Integrat-
ing high-density (500+ points m−2) DLS with tree-ring data may
enable the calculation of estimates of incremental growth across
wider areas, providing on-demand, wall-to-wall information that
is critical for managers and enables the precision implementation
of thinning to optimize growth rates.

In this paper, we demonstrate a methodology that integrates
high-density DLS and tree-ring data to evaluate the spatial hetero-
geneity of individual tree growth across managed stands; reveal-
ing tree size, competition-related and environmental drivers of
recent observed tree-level growth and capturing variability across
five stands. Our objectives were to (1) develop a growth model
based on tree-level metrics derived from DLS data, (2) identify
the best metrics able to predict recent basal area increment
across managed stands, and (3) scale up the resulting model
into a management ready product to guide precision thinning
treatments focused on potential growth optimization. This work
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Figure 1. Location and layout of the five sampled mid-rotation stands within Tree Farm License 52, northwest of Quesnel, British Columbia, Canada.
Stem-mapped plots are denoted as points overlaid on a canopy height model derived from airborne laser scanning (2021).

presents a novel workflow that combines DLS data with pre-
cisely geolocated tree core samples to produce layers intended to
guide precision thinning by providing targeted description of areas
within a stand where competitive release may be most needed to
optimize growth.

Methods
Study area
Sampling was conducted across five even-aged stands located
in Tree Farm License 52 (TFL52), a forest management tenure
located northwest of Quesnel, British Columbia, Canada. The area
is part of the Cariboo region of the province and is characterized
by dominant coniferous tree species including Douglas-fir (Pseu-
dotsuga menziesii var. glauca (Bessin) Franco), interior spruce (Picea
engelmannii × glauca (Moench) Voss), and lodgepole pine (Pinus
contorta Douglas var. latifolia (Engelm.)). The stands were selected
as a representative subset of blocks within a commercial thinning
cutting permit put forward by industrial partners in the area.

The five sampled stands, totalling 78 ha, were planted between
1980 and 1984 with a target density of 1600 stems per hectare and
an interspersed mix of interior spruce (∼50%), Douglas-fir (∼40%),
and lodgepole pine (∼10%) (Fig. 1). Some natural regeneration
has occurred along roadsides, in canopy gaps, and in areas with
lower stocking of planted trees. Naturally regenerated tree species
include subalpine fir (Abies lasiocarpa (Hooker) Nuttall), trembling
aspen (Populus tremuloides Michx), paper birch (Betula papyrifera
Marshall), and mountain alder (Alnus incana (Nutt.) Moench).

Laser scanning and imagery acquisitions
High-density laser scanning data were acquired in June 2022 with
a DJI Zenmuse L1 sensor equipped with a Livox Mid70 lidar mod-
ule flown on a DJI Matrice 300 RTK drone. The sensor was flown
on a grid mission at a speed of 6.2 m s−1 and maintained a flight
altitude of 80 m above ground level, altitude was maintained
through terrain following of a 1-m-resolution digital terrain model
(DTM) generated from previously acquired laser scanning data.
The laser scanning unit was set to a non-repetitive scanning mode

achieving a 70.4◦ (horizontal) by 77.2◦ (vertical) field of view, and
collected up to three returns per pulse at a repetition frequency
of 160 000 Hz; 75% overlap between flight lines resulted in an
average point density of 1150 points m−2 across the study area.
The raw data from the L1 sensor was processed into standard LAS
files through DJI Terra (version 3.10.7.1) with the optimize point
cloud accuracy setting enabled to optimize flight lines.

Reference optical (RGB) imagery was collected near simultane-
ously with the DJI P1 camera mounted on the DJI Matrice 300 RTK
drone. Images were acquired at 80 m above ground level with a
forward and side overlap of 85%. Photogrammetric alignment was
performed on optical images producing point clouds and ortho-
mosaic imagery with a spatial resolution of 1 cm. The settings
for generation of orthomosaic imagery in Agisoft Metashape are
listed in Table 1.

Field data collection
To provide a ground reference of field trees, stem mapping was
conducted for 815 trees in nine plots spread across the sampled
stands, simultaneously with the DLS acquisitions. Plot locations
were randomly distributed and all trees >4 cm diameter at breast
height (DBH) within an 11.28-m radius (400 m2) were measured
and mapped. Trees within plots were numbered sequentially
clockwise from the centre of the plot facing north. Species, crown
class, decay class, DBH, two crown widths—one at the maximum
width and one perpendicular—and disturbance indicators were
recorded for all trees (Fig. 2). For a subset of 10 trees per plot, apex
and base-of-live-crown heights were measured with a vertex. Tree
locations were recorded with a combination of a Haglöf PosTex
ultrasonic positioning tool and a Trimble Geo 7X differential GPS
unit (Lämås 2010). Relative positions from the ultrasonic triangu-
lation tool were georeferenced using a differential GPS point at the
plot centre with 5–20 cm accuracy and adjusted through manual
rotation of the stem map in a geographic information system with
the 1-cm RGB reference imagery. Tree matching was evaluated by
comparing the coordinates of tree-top maxima detected from the
laser scanning data with georeferenced stem positions collected
in the field; the closest two matches were assessed and the
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Table 1. Options used to generate orthomosaic imagery in Agisoft Metashape.

Image alignment Point cloud and depth map generation

Accuracy High Quality High

Generic preselection Yes Filtering mode Mild
Reference preselection Source Max neighbours 16
Key point limit 0 Orthomosaic generation
Tie point limit 0 Surface DEM
Exclude stationary tie points Yes Blending mode Mosaic
Guided image matching Yes Enable hole filling Yes
Adaptive camera model fitting Yes Enable ghost filter No

Figure 2. Example of reference plot used in the tree matching process. Pane 1—solid circles indicate ground reference stem map coloured by
field-determined crown class and sized by diameter. Pane 2—crosses indicate automatically detected tree tops (see section 2.5), dashed line shows
extent of circular plots (400 m2). RGB 1-cm reference imagery (panes 1 and 3) and DLS-derived 10-cm canopy height model (pane 2) are used as
background.

shortest distance match was taken (Fig. 2). Matches beyond 2 m
in distance were deemed to be false negatives. Typical accuracy
metrics were computed and are reported below (Li et al. 2012).
Leaning trees were recorded during plot measurement and none
were found to be in excess of 2 m from the base. Matched trees
were also assessed in situ during later field visits to the plots to
collect tree cores and found to be highly accurate.

Across the plots, a subset of 130 stem-mapped trees were
selected for tree coring in October 2022 and February 2023. At
minimum 10 dominant, co-dominant, or intermediate trees were
selected in each plot for coring. Each tree was cored twice using
a Mora 5-mm-diameter increment borer at 1.3 m height above
ground; one core was taken from the east side of the bole and
the other from the south. Cores were labelled, stored in paper
straws, and kept cool until they were placed in a 60◦C oven and
dried for 48 h. Dried cores were oriented with xylem cells facing
upwards and mounted with wood glue on aspen boards. Once dry,
mounted cores were sanded with 100, 120, and 600 grit sandpaper
until tree-ring boundaries were clearly visible. Polished cores were
scanned with an Epson Expression 12000XL, at a resolution of 2400
pixels per inch. Scanned cores were subsequently measured with
CooRecorder 9.81 following the steps outlined by Maxwell and
Larsson (2021). Annual ring width values were converted to basal
area increment (BAI; mm2 yr−1), which is the change in cross-
sectional area associated with each annual ring to account for
relative differences in tree diameter (Bunn 2008). For each tree,
cumulative BAI was calculated for the five years preceding the

sample (sumBAI5) to represent recent growth following canopy
closure in the stand. Ring width increment (RWI) (mm yr−1) and
BAI values were averaged for the two cores collected from each
tree. A summary of tree core variables is presented in Table 2,
and a breakdown of cored trees by species and crown class is
presented in Table 3.

Laser scanning data processing
Raw DLS point clouds were processed as 100-m tiles with 10-
m buffers to avoid edge effects. Ground returns were classified
using a cloth simulation filter (CSF), which has proven accuracy
and implementation simplicity with high-density lidar data
(Zhang et al. 2016). The lidR implementation of CSF was
used with the following parameters: slope_smooth = FALSE,
class_threshold = 0.07, cloth_resolution = 0.7, rigidness = 2, itera-
tions = 500, and time_step = 0.65. A triangular irregular network
algorithm was applied to ground-classified points to produce
a digital terrain model (DTM) at a 0.25-m spatial resolution.
The return heights of classified lidar tiles were normalized to
their height above ground level. Canopy height models (CHMs)
and digital surface models (DSMs) were generated at a 0.1-m
spatial resolution by applying a point-to-raster algorithm to
normalized and raw lidar returns elevations, respectively. Surface
models were generated at higher spatial resolution than the DTM
due to the larger number of returns collected from the canopy
surface. A gaussian filter with a width of five cells was applied
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Table 2. Summary of cored trees included in incremental growth models (n = 130).

Variable Mean SD Min Max

DBH (cm) 20.7 5.1 7.6 35.3
H (m) 16.2 2.5 8.0 20.8
Crown volume (m3) 133.9 90.6 4.8 630.6
Irradiance 0.13 0.04 0.03 0.2
TWI 4.4 0.6 3.0 6.1
BAI (mm2 yr−1) 972.7 675.7 3.7 4471.4
RWI (mm yr−1) 3.2 1.6 0.12 11.7
sumBAI5 (mm2 5 yr−1) 10742.0 7220.5 735.7 39620.0

DBH, diameter at breast height (cm); H, tree-top height from DLS (m); crown volume, concave hull volume fit to segmented laser scanning points within each
crown (m3); irradiance, mean daily illumination value (unitless) summarized per tree crown across growing season; TWI, mean topographic wetness index
(unitless) extracted for cored tree crowns; BAI, annual basal area increment from tree core samples (mm2 yr−1); RWI, annual ring width increment from tree
core samples (mm yr−1); sumBAI5, cumulative basal area of the 5 years preceding tree core sampling (mm2 5 yr−1).

Table 3. Number of cored trees (n = 130) field-determined species and crown class.

Tree species Dominant Co-dominant Intermediate

Douglas-fir (Fd) 8 42 6
Interior spruce (Sx) 6 35 3
Lodgepole pine (Pl) 3 26 1

to smooth irregularities in the canopy height model before tree
approximation.

Tree detection and segmentation were performed on the
smoothed CHM. First, a local maximum filter was applied, using
a 2-m circular window and a 10-m minimum height threshold,
which corresponds to the minimum height of intermediate trees
in our reference data (Wulder et al. 2000). Using these maxima
as seeds, marker-based watershed segmentation was used to
approximate crown extents (Ke and Quackenbush 2011). This top-
down raster-based approach is inherently focused on identifying
co-dominant and dominant trees. To reduce the tendency for
segmentations to include often lower adjacent vegetation, only
CHM pixels >70% of tree-top height for each segmented crown
were retained (Grubinger et al. 2023). The resulting segmentations
were cleaned by filling holes and retaining the largest polygon
associated with each detected tree top.

Generating tree-level growth predictors
The resulting tree segmentations were used together with the DLS
data products to estimate a range of tree-level metrics. These
metrics were used as explanatory variables in the prediction of
recent basal area growth for cored trees and in the computation
of competition metrics across the study stands. Tree-level metrics
included crown volume, growing season solar irradiance, topo-
graphic wetness, and a pairwise tree competition index, each of
which is described in the following text.

To estimate crown volume, point clouds were first clipped to
the two-dimensional extents generated from the watershed tree
segmentation approach. For each clipped tree-level point cloud,
crown volume was computed by generating alpha shapes, which
are geometric objects that can flexibly approximate the outer
shape of a set of points. Crown volume was estimated using both
concave and convex alpha shapes generated using alpha values
of 1 and Inf, respectively. The former produces a tighter, more
detailed shape that can capture the nuances of the tree point
cloud’s outer boundary, while the latter expands to cover the full
extent of the crown, providing a smooth boundary around each set
of points (Fig. 3). The volume (m3) of each alphashape was then

Figure 3. Example computation of three-dimensional alpha shapes from
a segmented tree point cloud. Clipped point cloud is displayed on the
left, convex (alpha = infinite) and concave (alpha = 1) alpha shapes fit to
this point cloud are displayed in the centre and right.

calculated and served as an estimate of tree crown volume for
further analyses.

Direct growing season irradiance was estimated for each tree
crown using the laser-scanning-derived DSM and the tree seg-
mentations (Thieurmel 2019). To estimate solar irradiance for our
study stands, we simulated three time points (11 a.m., 1 p.m.,
and 3 p.m.) for each Monday during the growing season. A unit-
less index of potential direct irradiance (hereafter referred to as
irradiance) was simulated across the DSM using a rayshading
algorithm at each solar timepoint, considering both the zenith and
azimuth angle of the sun (Morgan-Wall 2023). We then averaged
the results representing mean daily irradiance received per 0.1-m
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Figure 4. (A) Simulation of growing season direct irradiance; 1–2, digital surface models are generated from uppermost canopy returns of the point
cloud; 3, solar position is determined for each Monday of the growing season at 11 a.m., 1 p.m., and 3 p.m.; 4, rayshading is conducted for the given
solar position at each time point; 5, irradiance is then averaged across growing season timepoints (n = 54); 6, average growing season irradiance is
extracted for each segmented tree crown. (B) Characterization of fine-scale topographic wetness across study area; 1, ground classification is
conducted on lidar returns; 2, digital terrain model is generated from ground returns; 3, digital terrain model is smoothed with a median filter; 4, slope
raster is calculated as the difference between cells; 5, flow accumulation is estimated; 6, topographic wetness index is calculated from constituents
and the mean value is extracted for tree crowns.

pixel throughout the growing season (Fig. 4A). The mean value of
this raster was extracted for each tree crown (irr_mean) and used
in further modelling efforts. This approach accounted for solar
position, topography, and estimated total potential direct canopy
irradiance. In real-world conditions, actual values will be lower
due to cloud cover (Jennewein et al. 2021).

To estimate potential surface water flow, the topographic wet-
ness index (TWI), also known as the compound topographic index
(Fig. 4B), was calculated. Slope and flow accumulation were esti-
mated from the 0.25-m DTM and used as inputs to determine TWI
for each cell (Sørensen et al. 2006). The mean TWI values were
then extracted for each tree crown (twi_mean) and used in further
modelling efforts.

Finally, established techniques for quantifying competition
as an index were applied to the detected trees using a pairwise
distance-dependent equation which weights the influence of
neighbouring trees based on their size (within the sphere of
influence) relative to their distance from the target tree (Heygi
1974). This approach relies on field measurements of tree size
such as top height and diameter. However, it is now increasingly
common to use three-dimensional tree size metrics that can be
more readily derived from remote sensing such as tree crown
volume/area (Ronoud et al. 2022). In our case, the distance-
dependent competition index was applied to crown volume
(convex_hull) values derived from the DLS data to describe the
local competition experienced by each detected tree (Fig. 5) (Heygi
1974). A 6-m radius sphere of influence around each target tree
was used which approximates 3.5 times the average crown radius
(1.7 m) (Contreras et al. 2011; García 2014).

CI =
n∑

i=1

Xi(
X × disti

) (1)

Here, CI is the competition index value for a target tree, X is the
crown volume for the target tree, Xi is the crown volume for the
competitor tree i, disti is the Euclidean distance from the target
tree to the competitor tree i, and n is the number of competitor
trees within the sphere of influence.

Modelling recent basal area growth
Tree-level growth predictor variables were calculated for each
individual tree segmented across the study area (Table 4). Tree
segmentations attributed with predictor values that were posi-
tively matched to cored trees (n = 130) were isolated and used for
model development. To address the hierarchical nature of our
sampling design where cored trees are grouped together in plots,
we used linear mixed-effects models to incorporate plot identity
as a random effect. We included plot as a random intercept
to account for variability in growth patterns between plots and
correlated error structures. The significance of the random plot
effect was based on the likelihood ratio test (P < .05) between
nested models (Pinheiro and Bates 2000). We used the cumulative
basal area increment of the last 5 years (sumBAI5; mm2 5 yr−1)
as the response variable to capture the range of recent growth
patterns in the cored trees (n = 130). Natural log transformations
were conducted on the response and explanatory variables to
satisfy the assumptions of linearity and homogeneity of residuals.
The general form of a linear mixed-effects model is as follows
(Eq. 2):

log
(
sumBAI5ij

) = (
β0 + b0j

) + β1V1 + · · · + βnVn + εij (2)

where sumBAI5ij represents the 5-year periodic total basal area
increment for the ith tree measured at the jth plot, β0 is the
intercept, and β1, . . . , βn are the parameters estimated for the
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Figure 5. Calculation of pairwise competition index within the sphere of influence (6-m radius) surrounding each target tree. X = target tree size,
Xi = competitor tree size, disti = Euclidean distance from target tree to competitor, n = number of competitor trees within sphere of influence.

corresponding covariables V1, . . . , Vn, b0j is the plot level random
effect, and εij is the error term that is assumed to be independent
and normally distributed with a mean of zero and constant
variance, b0j ∼ N

(
0, σ 2

0

)
and εi ∼ N

(
0, σ 2

res

)
. A suite of univariate

and multivariate models was generated to test different combina-
tion of variables listed in Table 4. Interactions between predictor
variables were not incorporated in the model selection process
due to the associated difficulty interpreting interactions between
continuous variables. The corrected Akaike information criterion
(AICc) was used to select the best candidate model as the ratio
between the number of data points and the number of model
parameters ratio fell <40 when more than one predictor variable
was included (Burnham et al. 2010). The model with the lowest
AICc was used as the full model for subsequent prediction of
wall-to-wall recent basal area increment growth, log(sumBAI5).
Logarithmic predictions applied outside of plot boundaries were
back transformed to their original scale considering only esti-
mates from the fixed-effects model.

To evaluate the reliability of the best candidate model, we con-
ducted a leave-one-stand-out cross-validation. In each iteration,
a model was trained on data from four stands and evaluated on
the trees in the remaining stand. To evaluate the cross-validation,
adjusted R2, bias, model efficiency, and root mean squared error
(RMSE) were calculated for each iteration and averaged (Riofrío
et al. 2019).

Overlay prioritization analyses
With the aim of operationalizing the modelling results, we applied
predictions of 5-year BAI and computed the DLS-derived com-
petition index for all individual trees segmented beyond plot
boundaries. From this information, we formulated a new growth
competition index (GCI) intended to capture two key pieces of
information across the stand and their variability, the first being
the range of predicted BAI growth values, and the second, a
representation of the spatial distribution of tree sizes relative
to their neighbours across the stand. Once applied across the
stand, we analysed the spatial patterns of predicted growth,

laser-scanning-derived competition, and the GCI, and summa-
rized these results across a grid to facilitate operational use and
interpretation.

The goal of the GCI is to describe trees in terms of their rela-
tive growth and laser-scanning-derived competition and identify
trees with high competition index and low predicted growth as
high priority for thinning. Due to differences in the distributions
and magnitudes of sumBAI5 predictions and cindex, both were
normalized across all trees for each stand based on the minimum
and maximum values. Next, for each tree we calculated GCI using
the following formula:

GCI = (1 − sumBAI5norm) + cindexnorm

2
(3)

GCI describes the distribution of predicted growth and the
derived competition metric across the stand and can be used as
a relative thinning priority indicator to map variability in these
metrics. Values ranged from zero to one, with values closer to
one indicating relatively high competition and low growth, values
closer to zero representing trees where growth was relatively
high and competition low, and intermediate values suggesting
similarity between the two metrics.

As a demonstration, summary grids were calculated that
can be used to guide precision commercial thinning operations
towards clusters of high-priority cells (Wilhelmsson et al. 2021).
For this, predicted 5-year BAI (sumBAI5) and the pairwise
competition index (cindex) were summed for all trees falling
within 2500-m2 (0.25 ha) hexagonal cells covering each stand.
Hexagons were chosen over a square grid to reduce edge
effects associated with summarization, improve the clarity of
visualizations, and better integrate with existing polygonal forest
inventory systems (Birch et al. 2007).

The cumulative and mean GCI was extracted for all trees falling
within each hexagonal summary cell to describe the distribution
of these values across the stands. Finally, summary grids were
clipped to the established boundaries of the operational stands to
improve interpretability and reduce the influence of forest area
adjacent to the study stands.
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Table 4. Variables included in basal area increment models.

Explanatory variables Data source Ecological justification Range
(mean/min/max/SD)

Crown volume
(vol_convex and
vol_concave)

Alphashape model based on 3D tree
segmentation

Incorporates three-dimensional crown
structure of neighbouring and target trees

vol_convex: (101/5/349/61)
vol_concave: (29/1/120/19)
Units = m3

Solar irradiance
(irr_mean)

Digital surface model (DSM) together
with localized raytracing model
across the growing season

Accounts for shading impacts of canopy and
surrounding trees on the amount of sunlight
intercepted by the target tree

(0.15/0.03/0.25/0.05)
Unitless

Tree height (Zmax) DLS-derived local maxima tree-top
height

Tree height is a simple proxy of tree
dominance, its relation to neighbouring tree
heights indicates the degree to which the
target tree has foliage above its neighbours

(16.6/10.1/21.2/2.4)
Units = m

Topographic wetness
index (twi_mean)

DLS-derived digital terrain model
(DTM)

Accounts for microtopographic differences in
potential soil moisture available for each tree

(4.3/2.9/6.7/0.7)
Unitless

Pairwise competition
(cindex)

Neighbourhood analyses of crown
volume (vol_convex)

Distance-dependent tree size indices have
been long used as covariables in tree growth
models as they describe a tree’s relative
dominance and resource availability

(5.0/0.5/65.6/6.8)
Unitless

Tree diameter (DBH) Calliper field measurements Diameter is the status quo for assessing the
potential growth and competitive status of
trees in a forested stand and is easily obtained
for plot measurements

(20.5/7.6/35.3/5.2)
Units = cm

Response variables
Recent basal area
increment (sumBAI5)

Tree-ring width measurements from
core samples

BAI is driven in large part by a tree’s ability to
maintain competitive status and obtain
sufficient sunlight for sustained growth; we
took the cumulative growth over the last 5
years to describe the recent growth pattern of
each sample tree. Generally, tree growth
models estimate basal area increments in
5-year bins

(4726.3/278.7/17330.3/2987.6)
Units = mm2 5 yr−1

Range of values for cored trees presented in final column including mean, minimum, maximum, and standard deviation.

Software used
R Packages used for this study included lidR for all lidar prepro-
cessing including tile division, buffering, ground return classifi-
cation, and the generation of DTMs, CHMs, and DSMs (Roussel
et al. 2020). lidR was also used to detect local maxima and conduct
marker-based watershed tree segmentation. Tree core measure-
ments were processed into basal area increment using dplR (Bunn
2008). The estimation of crown volume used the alphashape3d
package to compute three-dimensional hulls associated with each
segmented point cloud (Lafarge and Pateiro-Lopez 2014). Surface
water flow and its accumulation were estimated using the White-
box tools package in R to compute a TWI raster based on the
DLS DTM (Lindsay 2014; Sørensen et al. 2006). The simulation
of solar irradiance was conducted with the rayshader package
(Morgan-Wall 2023). The siplab and spatstat packages enabled the
calculation of distance-dependent competition indices (Baddeley
and Turner 2005; García, 2014). Orthomosaics used for tree match-
ing were generated from drone images in Agisoft Metashape Pro-
fessional Version 2.0 (Agisoft LLC, St. Petersburg, Russia). Finally,
linear mixed-effect modelling was conducted in R with the lme4
package (Bates et al. 2015).

Results
Tree matching
The results of tree detection were validated with the georefer-
enced ground measured stem maps. Accuracies were high for
dominant and co-dominant stem achieving recalls and F-scores

of 0.95/0.98 and 0.78/0.88, respectively. Intermediate and sup-
pressed stems had much lower recall and F-scores of 0.12/0.22 and
0.09/0.17, respectively. A summary of tree matching accuracy by
field-determined crown class is reported in Table 5. All 130 trees
from which cores sampled were successfully matched with tree
tops detected in the canopy height model.

Basal area increment model
Results from the model selection process to predict recent basal
area growth (sumBAI5) of the individual trees sampled in our
stands indicated a strong effect of crown volume (vol_convex) in
explaining variation when the random effect of plot was included
(marginal R2 = 0.70). Other variables including solar irradiance
(irr_mean), pairwise competition (cindex), tree height (Zmax), and
field-measured diameter (DBH) were also found to be significant
predictors when included on their own (P < .05) but nonsignif-
icant when included in multivariate models alongside crown
volume (vol_convex) (Table 6). To investigate other combinations,
all possible models were examined; however, the simplest model
which included only log-transformed crown volume (vol_convex)
and the random effect of plot consistently had the highest per-
formance and predictive power (AIC = 150.0, marginal R2 = 0.70,
conditional R2 = 0.62) (Eq. 4). The performance of a subset of the
tested models including all univariate and selected multivariate
models including crown volume (log_vol_convex) and the top uni-
variate predictors (log_vol_concave, log_irr_mean, cindex, Zmax)
are reported in Table 6. The leave-one-stand-out cross-validation
of the fixed-effects model resulted in an average adjusted R2 of
0.59, back-transformed RMSE of 209mm2 5 yr−1 (42.3% of mean),
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Table 5. Results of tree matching accuracy assessment between ground reference stems and lidar detected tree-top maxima.

Dominant Co-dominant Intermediate Suppressed

N Reference 42 403 114 65
N Detected 40 314 14 6
True positives 40 314 14 6
False negatives 2 89 100 59
Recall 0.95 0.78 0.12 0.09
F-Score 0.98 0.88 0.22 0.17
Max/min distance (m) 2.68/0.008 3.33/0.002 3.37/0.01 2.17/0.02
Mean/SD distance (m) 0.97/0.79 1.03/0.88 1.38/0.89 1.26/0.77

Standard accuracy metrics were generated as following the approach demonstrated in Li et al. (2012). Accuracy metrics are reported by field-determined crown
class.

Table 6. Summary of 5-year BAI linear mixed-effects modelling efforts.

Univariate models Multivariate models Diameter

Model number 1 2 3 4 5 6 7 8 9 10 11

(Intercept) 4.76∗∗∗ 6.24∗∗∗ 10.27∗∗∗ 8.60∗∗∗ 8.83∗∗∗ 5.41∗∗∗ 4.94∗∗∗ 5.43∗∗∗ 5.29∗∗∗ 4.64∗∗∗ 6.17∗∗∗

log_vol_convex 0.75∗∗∗ 0.64∗∗∗ 0.70∗∗∗ 0.65∗∗∗ 0.72∗∗∗

(0.051) (0.16) (0.062) (0.079) (0.069)
log_vol_concave 0.62∗∗∗ 0.10

(0.047) (0.14)
log_irr_mean 0.94∗∗∗ 0.19

(0.14) (0.11)
cindex −0.06∗∗∗ −0.01

(0.0055) (0.0070)
twi_mean −0.12

(0.096)
Zmax 0.17∗∗∗ 0.02

(0.023) (0.022)
Diameter 0.10∗∗∗

(0.0075)
σ 0

2 0.039 0.031 0.046 0.034 0.038 0.038 0.073 0.038 0.036 0.044 0.0075
σ res

2 0.15 0.17 0.30 0.23 0.42 0.42 0.28 0.15 0.15 0.15 0.18
R2 Marginal 0.62 0.57 0.25 0.42 0.012 0.33 0.62 0.62 0.62 0.62 0.60
R2 Conditional 0.70 0.64 0.35 0.49 0.10 0.47 0.70 0.70 0.70 0.70 0.62
AICc 150.3 165.3 234.2 207.3 274.3 232.4 154.1 152.3 157.9 157.8 165.0
�AICc 0 15.0 83.9 57.0 124.9 82.1 4.8 2.9 7.6 7.5 14.7
RMSE 0.38 0.40 0.53 0.47 0.63 0.52 0.38 0.37 0.37 0.38 0.41

Predictor variables listed on left with associated coefficients, significance, and standard errors in brackets beneath. Models with single variables are listed in
models 1–6, and multivariate models in 7–10. Model 11 is based on field-measured diameter alone. ∗P < .05, ∗∗P < .01, ∗∗∗P < .001.

bias of −0.030, and model efficiency of 0.39.

sumBAI5 = exp
(
4.75962 + 0.75351 ∗ log

(
vol_convex

))
(4)

Thinning prioritization analyses
Summarizing growth and competition estimates across all five
stands resulted in gridded maps of cumulative basal area growth,
competition, and relative thinning priority (GCI) (Fig. 6, Fig. 7).
Across all five stands, cumulative growth values within grid
cells (2500 m2) ranged from 248 706 to 2 277 036 with a mean of
1 268 934 (312 429 SD) mm2 5 yr−1. Cumulative competition values
ranged from 181 to 2851 with a mean of 834 (323 SD). Average
values of GCI within grid cells ranged from 0.14 to 0.71 with
a mean of 0.47 (0.06 SD) (Table 7). Cumulative BAI rates were
converted from square millimetre to square metre to improve the
readability of the following figures and table.

Discussion
This study investigated the suitability of tree-level metrics derived
from drone laser scanning to explain variability in recent basal

area growth and indirectly map competition across trees in
managed stands. The selected basal area growth model was
applied across the five study stands alongside laser-scanning-
derived competition. Our results suggest that recent basal area
growth (sumBAI5) was most strongly linked to crown volume
(convex_hull) which enabled the prediction of recent growth, the
derivation of a competition metric, and the synthesis of a thinning
priority index across a regular summary grid. The intended
users of this type of drone-derived product would be silvicultural
managers implementing commercial thinning operations across
large areas where individual tree-level selection is not feasible
but where broader level prioritization using 0.25-ha cells could
be guided across treatment units (Wilhelmsson et al. 2021).
Through this approach, intra-stand variability in both growth
and competition metrics can be captured and used to optimize
growth gains from thinning removals. The focus of this study
was to present a workflow focused on optimizing growth in the
form of basal area increment with commercial thinning, with the
goal of reducing stand rotation age (Griess et al. 2019). Thinning
treatments can, however, also be implemented to support other
management objectives including manipulating wood quality,
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Figure 6. Example summary maps for study stand. CT1, cumulative basal area growth, competition, as well as mean GCI values are displayed for each
grid cell (0.25 ha). Gradients represent percentile breaks for values from 0 to 10, 10–25, 25–50, 50–75, 75–90, and 90–100% of values.

Figure 7. Example summary maps for study stand. CT5, cumulative basal area growth, competition, as well as mean GCI values are displayed for each
grid cell (0.25 ha). Gradients represent percentile breaks for values from 0 to 10, 10–25, 25–50, 50–75, 75–90, and 90–100% of values.

Table 7. Summary statistics for grid cells contained in the five study stands (n = 447).

Metric Mean SD Minimum Maximum

Cumulative BAI (m2 5 yr−1) 1.27 0.31 0.25 2.28
Cumulative competition 834 323 181 2851
Cumulative GCI 89.1 54.0 0.14 247.9
Mean GCI 0.47 0.06 0.14 0.71

Mean, standard deviation (SD), minimum and maximum values are reported for all grid cells (0.25 ha) across the five study stands.

and increasing resistance to disturbances including forest pests,
drought, and wildfire (Moreau et al. 2022). These objectives would
require their own specialized prioritization schemes which are not
covered by this work but could be informed by it. In the following
sections, the results of modelling efforts, the effectiveness

and influence of tree detection, and the utility of the drone-
based forest inventories to inform precision forest management
are discussed, along with considerations for future research
and operational applications of the approach demonstrated
herein.
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Predicting recent growth with tree-level laser
scanning metrics
Crown volume (convex hull) had the strongest ability to explain
variation in observed recent basal area increment growth of the
cored trees in our study. High-density drone laser scanning data
and automated tree segmentation processes enabled the estima-
tion of crown volume for all observable trees across large areas
facilitating the prediction of recent BAI. Moreover, crown mea-
surements derived from drone or terrestrial laser scanning data
are able to accurately capture the influence of neighbouring com-
petitors on individual tree crowns in spatially diverse canopies
(Barbeito et al. 2017; Metz et al. 2013). The model (11) based
on solely field-derived DBH showed a reduced ability (marginal
R2 = 0.62) to explain variability in recent basal area growth than
the model using crown volume (vol_convex) (marginal R2 = 0.70).
This finding suggests that in these stands, DLS-derived crown
volume not only provides the benefit of wall-to-wall coverage
compared to DBH, but also served to better predict growth of
the cored trees. We recognize, however, that variability in growth
due to unmeasured factors, including tree species, genetics, site
productivity, past management actions, and undocumented dis-
turbance agents, likely limit the strength of this relationship.
Despite these sources of variability, leave-one-stand-out cross-
validation of the selected model indicated fair performance and
allowed prediction across stands and the calculation of spatially
explicit growth rates estimates and competition metrics.

The growth of other mixed coniferous stands in central British
Columbia has been previously tied primarily to aboveground com-
petition for light resources (Acquah and Marshall 2020). The
relationship observed between BAI, crown volume, pairwise com-
petition, and solar irradiance indicates the strength of light-
dependent drivers in determining growth rates (Table 6). In our
results, when included in predictive models with crown volume,
solar irradiance and competition became statistically insignifi-
cant, likely reflecting redundancy in the information captured
by crown volume (tree size) and these related metrics as larger
crowns dominate their neighbours, and capture light more effec-
tively (Binkley et al. 2013; Gspaltl et al. 2013).

Topographic wetness index was found to have no significant
relationship with recent BAI, even as a sole predictor. It is possible
that a lack in variation of surface topography across plots in
this study obscured the influence of topography, or that surface
moisture is not a limiting factor to growth in the examined stands.

Retrospective analysis of tree growth pattern using increment
borers is a classic data source to develop local forest growth mod-
els (Riofrío et al. 2019). Obtaining highly accurate measurements
from tree cores requires labour-intensive processing in the field
and laboratory to collect, prepare, scan, and quantify each ring
width boundary (Maxwell and Larsson 2021). Integrating these
measurements into fine-scale inventories based on remote sens-
ing comes with its own set of challenges; primarily, the precise
geolocation and matching of cored trees. Ensuring a positive
match between cored trees and detected trees was instrumental
to building a reliable model based on tree-level metrics. In our
case, we found that the use of highly accurate differential GPS,
ultrasonic triangulation of stem-mapped trees, and adjustment
of georeferenced stem maps using coincidently acquired high-
resolution imagery were critical steps to ensure strong model
correspondence. In this study, we were successfully able to geo-
locate all trees where tree core samples were taken. However,
users of this method interested in sample subordinate crown
classes should carefully adapt their tree detection strategies
accordingly.

Influence of the tree detection process
The efficacy of individual tree detection and segmentation
approaches from remotely sensed data including drone-based
sensors has been thoroughly explored in recent years and
continues to be refined (Chehreh et al. 2023). Overall, many
limitations and site-specific patterns have been established in
applying the process across the world’s forests. Specifically, the
tendency for individual tree segmentation—particularly raster-
based approaches—to miss occluded trees is often cited as
problematic (Hamraz et al. 2017). In this study, dominant and co-
dominant trees were targeted as they are of principal economic
interest in commercial thinning from above. Tree detection
accuracy for dominant and co-dominant trees across our stands
was high (F-score = 0.98/0.88); however, the raster-based segmen-
tation approach unsurprisingly failed to capture the majority of
intermediate and suppressed trees (F-score = 0.22/0.17). In the
dense study stands, the majority of suppressed trees were found
to have already experienced competition-induced mortality, and
likely do not significantly contribute to basal area growth or
affect the growth of dominant and co-dominant trees through
competition.

We chose well-demonstrated, computationally simple meth-
ods for individual tree detection in even-aged coniferous stands,
a forest type that has been proven compatible with the approach
overall (Jakubowski et al. 2013). The over- and under-segmentation
of overstory trees with this approach cannot be avoided and there-
fore the accuracy metrics (Table 5) presented reflect the impact of
potential bias associated with these errors. Higher density laser
scanning datasets particularly in terms of their understory cover-
age, combined with modified tree detection approaches capable
of segmenting suppressed and intermediate trees, could enable a
similar approach to be implemented to improve the reliability of
the approach and support prioritization of thinning from below
(Hamraz et al. 2017).

Manipulating species composition is often an objective of thin-
ning efforts as the growth of high-value species can be priori-
tized by targeting removal efforts towards lower value species.
Tree species and inter-species competitive interactions also affect
incremental growth patterns within a stand (Pretzsch and Schütze
2009; Zhao et al. 2006), and might also modify canopy packing and
crown allometry through species interactions. However, species
information was not included at this stage in our wall-to-wall pre-
dictions and we recognize including species labels of segmented
trees as a predictor of basal area increment may enable a more
robust approach while simultaneously providing a compositional
layer for further prioritization of thinning efforts. Future work will
examine the possibility of automatically estimating species from
these high-density point clouds and adding this information into
the workflow.

Wall-to-wall summaries
The application of the predictive model to tree crowns segmented
outside of plot boundaries enabled the assessment of intra-stand
variability in recent BAI, derived competition metrics, and the
growth competition index. Operationally, the specifics of the sum-
marization process will depend on the forest management scale
and framework that users choose to implement. However, sum-
ming or averaging estimates across equally sized cells provides a
suitable baseline for further prioritization efforts and clustering
(e.g. Wilhelmsson et al. 2021). The summary layers we produced
display a wide range of values for the growth predictions, com-
petition metrics, and priority index which visually appear to
be clustered (Fig. 6, Fig. 7). Depending on machine and operator
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availability, as well as other objectives, managers can view these
maps in a GIS and determine a suitable threshold GCI value to
determine a cell’s inclusion and intensity in the thinning oper-
ation. By allocating less time to lower priority areas of a stand
(e.g. GCI < 0.3), operator hours can be shifted to more intensely
thin other areas within and across other nearby stands. The utility
and calibration of this GCI threshold could be confirmed through
stand visits with foresters who are experienced in visually assess
thinning priority from the ground.

Our study focused on the development of a pre-thinning pri-
oritization inventory; however, future work can also investigate
the utility of integrating wall-to-wall BAI estimates to evaluate
the actual efficacy of thinning treatments, the outcomes of which
have been shown to depend on the approach, intensity, and timing
(Bose et al. 2018). Following thinning efforts in the stands anal-
ysed here, the expected reaction of remnant trees would be an
increase in overall crown volume in response to increased lateral
growing space and light availability. Conducting similar analyses
once crowns and tree growth patterns have had sufficient time
to react to the competitive release associated with the thinning
can enable managers to assess variability and effectiveness real-
ized as increases in basal area growth (Bose et al. 2018). As a
result, subsequent drone-based surveys 5 or 10 years following
treatments can quantify crown volume expansion, competition
status changes, and link these metrics with tree growth enabling
spatially explicit quantification of the impact of thinning on basal
area or volume increment at a sub-stand level. Moreover, repeated
quantification of tree increment and growth allow comparison
of the short- and long-term effects of stand density regulation
on the growth and yield of forest stands (Pretzsch 2020; Zeide
2001). Managers can compare the results of growth and com-
petition trends derived from remote sensing to investigate the
spatial distribution of growth rate changes across stands and how
these relate to thinning prescriptions. Generating bi-temporal
laser scanning assessments across a range of stand conditions
could enable the development of generalizable remote sensing–
driven predictions of growth increases resulting from thinning,
allowing the evaluation of net effects across differing competition,
structural, and compositional configurations (Tompalski et al.
2021).

Collection of drone-based forest inventories
In this study, the remote sensing and field datasets were col-
lected well in advance of any operations to allow for sufficient
time to process, integrate, and interpret the datasets, particularly
the tree core samples which required time-consuming manual
measurement. As computation power increases and open-source
tools become more easily accessible for managers, the time gap
between data acquisition and the generation of a prioritization
layer will decrease (Roussel et al. 2020). Reduced technological
constraints in information processing, and demonstrations of
measurement and prioritization frameworks to map distribu-
tions of intra-stand variability in basal area growth will serve to
streamline the planning of spatially explicit precision thinning
operations.

To prioritize the application of commercial thinning in man-
aged stands, the timing of drone laser scanning acquisitions
should also be determined strategically with stand successional
stage. Users of this approach should time data acquisitions fol-
lowing canopy closure, during the period in which the effect of
density on growth is maximal and competition-induced effects
among trees are actively reducing overall productivity (Pretzsch
2020; Thurm and Pretzsch 2021). Ideally, these data should be

collected before significant stand mortality driven by resource
competition has occurred, which could reduce the potential yield
of the stand (Bose et al. 2018).

The exact timing of both thinning treatments and pre-thinning
data collection will depend on local forest structure and compo-
sition and should be informed by expert judgement, and data-
driven understanding of localized response to the timing of thin-
ning interventions. Optimal timing can be determined for exam-
ple by assessing changes in relative volume growth demonstrated
in stands before and after thinning; however, this relationship is
dependent on site, species, density, and intensity of the thinning
(Bose et al. 2018). As fine-scale remote sensing tools are more
broadly integrated into both the planning and evaluation of thin-
ning treatments, the optimal timing and intensity of treatments
may become clearer.

Integrating fine-scale forest inventory data into
management
Fine-scale estimates of relative tree growth are only useful in a
management context to the extent which they can be actively
integrated in existing operations. Modern single tree harvesting
systems are now capable of using raster and polygonal forest
inventory layers on on-board computers which are displayed
to the operator in real time during the application of thinning
treatments (Keefe et al. 2022). In Canada as well as other jurisdic-
tions internationally, a shift is underway as companies and insti-
tutions move from traditional stand-level polygonal inventories
towards pixel-based enhanced forest inventories typically derived
from airborne laser scanning (Fassnacht et al. 2023). Simplifying
these detailed forest inventory estimates while ensuring adequate
coverage that captures intra-stand spatial variability is key to
successfully integrating these data into effective management
decisions. In this study, we achieved this through summariza-
tion across a 0.25-ha grid, leaving the remainder of planning to
interpretation by the forest manager. Future research can focus
on the direct integration of remotely sensed forest attributes into
automated planning systems that accommodate operational con-
straints, management objectives, and established local practices
for thinning intensity and pattern (Wing et al. 2019).

Integrating fine-scale inventory data into precision planning
can improve the efficiency and economic viability of forest man-
agement with limited operational resources (Gülci et al. 2015).
Mapping the distribution of thinning efforts may also improve
the prediction of gains from the induced growth effect as well
as the quantification of timber yields from the thinning treat-
ments themselves. Persson et al. (2022) compared stand-level to
pixel-level (precision) thinning across conifer-dominated forests
in Sweden and demonstrated that precision methods resulted
in more consistent distributions of residual basal area indicat-
ing a successful capture of within-stand variation with these
techniques. While these authors noted only marginal economic
benefit to operations with their precision methods, improvements
in quantifying and mapping within-stand variation such as those
presented herein may increase the value generated by these
approaches (Persson et al. 2022).

This study summarized the results of the individual tree
approach on a regular grid (a map) to guide large-area thinning
prioritization in a western Canadian management context.
A similar approach could be implemented under different
circumstances where management occurs over smaller areas
and/or at the tree level to precisely target high-priority trees
(Keefe et al. 2022). However, this requires careful consideration
as it would require highly accurate and reliable connections to
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Global Navigation Satellite Systems (GNSS) for both the harvester
head and operator. Under canopy cover and particularly with
lower cost GNSS receivers, the positioning error of these systems
can exceed 7.0 m making this potentially unreliable particularly
in high-density stands which are often the target of thinning
(Hauglin et al. 2017).

Conclusion
In this study, we developed and demonstrated a new methodol-
ogy to link intra-stand variability in tree growth to competition
metrics and individual tree metrics derived from remote sensing
within five managed stands. Among several predictors, convex-
hull crown volume derived from laser scanning was the best
predictor of recent growth and was used to model recent basal
area increment and derive competition metrics across these large
areas. We synthesized our growth predictions and competition
metrics into a new GCI which was then summarized across a
regular grid and provided as maps to inform forest managers
during the prioritization of thinning operations to optimize basal
area growth. This work presents a novel application of drone
laser scanning in forest management and outlines a straightfor-
ward approach to integrate tree-ring growth data with fine-scale
remote sensing to answer operational and research questions. As
drone systems and the associated processing workflows become
increasingly capable, available, and affordable, they will continue
to provide critical, timely information which can increase the
efficiency and efficacy of silvicultural management including
commercial thinning.

Acknowledgements
Our thanks to the anonymous contributors and editors involved in
the peer review process of this manuscript—thank you very much
for your valuable time and careful feedback. Many thanks as well
to all the field assistants involved in the data collection process
including Sergio Alonso-Sanchez, Tommaso Trotto, Ramon Melser,
Dr Andrew Chadwick, Dr Rik Nuitjen, Dr Omar Mologni, Pablo
Valle Medrano, Solo Remonatto Rizzi, Dr Lukas Winiwarter, and
Dr Christopher Mulverhill. Topical and logistical support was
provided by industry partners at West Fraser, Quesnel. Special
thanks to help with the tree core processing provided by Dr David
Montwé, Fleur Damen, and Mustafa Sirajul.

Author contribution
Liam Irwin (Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Resources, Software, Validation,
Visualization, Writing – original draft, Writing – review & editing),
Nicholas Coops (Conceptualization, Funding acquisition, Project
administration, Resources, Supervision, Writing – original draft,
Writing – review & editing), José Riofrío (Conceptualization,
Formal analysis, Methodology, Supervision, Validation, Writing
– review & editing), Samuel Grubinger (Formal analysis, Method-
ology, Software, Writing – review & editing), Ignacio Barbeito (Con-
ceptualization, Investigation, Methodology, Supervision, Writing
– review & editing), Alexis Achim (Formal analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Supervision, Writing – review & editing), Dominik
Roeser (Conceptualization, Resources, Supervision).

Conflict of interest: None declared.

Funding
This research was conducted as part of the Silva21 Alliance Grant
Project (NSERC ALLRP 556265-20) funded by the Natural Sciences
and Engineering Research Council of Canada led by Dr Alexis
Achim.

Data availability
The data that support the findings of this study are available from
the corresponding author on reasonable request. A demonstration
of the competition metric and crown volume generation including
code and a subset of the study dataset can be found on GitHub at
the following link: https://liamirwin.github.io/CompTreeR/.

References
Achim A, Moreau G, Coops NC. et al. The changing culture of silvi-

culture. Forestry 2022;95:143–52. https://doi.org/10.1093/forestry/
cpab047.

Acquah SB, Marshall PL. Assessing differences in competitive effects
among tree species in Central British Columbia, Canada. Forests
2020;11:167. https://doi.org/10.3390/f11020167.

Ahmed S, Hilmers T, Uhl E. et al. Neighborhood competition mod-
ulates the link between crown structure and tree ring variabil-
ity in monospecific and mixed forest stands. For Ecol Manage
2024;560:121839. https://doi.org/10.1016/j.foreco.2024.121839.

Babst F, Bodesheim P, Charney N. et al. When tree rings go
global: challenges and opportunities for retro- and prospec-
tive insight. Quat Sci Rev 2018;197:1–20. https://doi.org/10.1016/
j.quascirev.2018.07.009.

Baddeley A, Turner R. Spatstat: an R package for analyzing spatial
point patterns. J Stat Softw 2005;12:1–42. https://doi.org/10.18637/
jss.v012.i06.

Barbeito I, Dassot M, Bayer D. et al. Terrestrial laser scanning reveals
differences in crown structure of Fagus sylvatica in mixed vs.
pure European forests. For Ecol Manage 2017;405:381–90. https://
doi.org/10.1016/j.foreco.2017.09.043.

Bates D, Mächler M, Bolker B. et al. Fitting linear mixed-effects models
using lme4. J Stat Softw 2015;67:1–48. https://doi.org/10.18637/jss.
v067.i01.

Binkley D, Campoe OC, Gspaltl M. et al. Light absorption and
use efficiency in forests: why patterns differ for trees and
stands. For Ecol Manage 2013;288:5–13. https://doi.org/10.1016/j.
foreco.2011.11.002.

Birch CPD, Oom SP, Beecham JA. Rectangular and hexagonal
grids used for observation, experiment and simulation in
ecology. Ecol Model 2007;206:347–59. https://doi.org/10.1016/j.
ecolmodel.2007.03.041.

Bose AK, Weiskittel A, Kuehne C. et al. Does commercial thinning
improve stand-level growth of the three most commercially
important softwood forest types in North America? For Ecol Man-
age 2018;409:683–93. https://doi.org/10.1016/j.foreco.2017.12.008.

Bunn AG. A dendrochronology program library in R (dplR).
Dendrochronologia 2008;26:115–24. https://doi.org/10.1016/j.
dendro.2008.01.002.

Burnham KP, Anderson DR, Anderson DR. Model Selection and Multi-
model Inference: A Practical Information-Theoretic Approach. 2. ed., [4.
printing] edition. New York, NY: Springer, 2010.

Cameron AD. Importance of early selective thinning in the devel-
opment of long-term stand stability and improved log quality: a
review. Forestry 2002;75:25–35. https://doi.org/10.1093/forestry/7
5.1.25.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/advance-article/doi/10.1093/forestry/cpae030/7692839 by guest on 13 June 2024

https://liamirwin.github.io/CompTreeR/
https://liamirwin.github.io/CompTreeR/
https://liamirwin.github.io/CompTreeR/
https://liamirwin.github.io/CompTreeR/
https://liamirwin.github.io/CompTreeR/
https://doi.org/10.1093/forestry/cpab047
https://doi.org/10.1093/forestry/cpab047
https://doi.org/10.1093/forestry/cpab047
https://doi.org/10.1093/forestry/cpab047
https://doi.org/10.1093/forestry/cpab047
https://doi.org/10.3390/f11020167
https://doi.org/10.3390/f11020167
https://doi.org/10.3390/f11020167
https://doi.org/10.3390/f11020167
https://doi.org/10.1016/j.foreco.2024.121839
https://doi.org/10.1016/j.foreco.2024.121839
https://doi.org/10.1016/j.foreco.2024.121839
https://doi.org/10.1016/j.foreco.2024.121839
https://doi.org/10.1016/j.foreco.2024.121839
https://doi.org/10.1016/j.quascirev.2018.07.009
https://doi.org/10.1016/j.quascirev.2018.07.009
https://doi.org/10.1016/j.quascirev.2018.07.009
https://doi.org/10.1016/j.quascirev.2018.07.009
https://doi.org/10.1016/j.quascirev.2018.07.009
https://doi.org/10.18637/jss.v012.i06
https://doi.org/10.18637/jss.v012.i06
https://doi.org/10.18637/jss.v012.i06
https://doi.org/10.18637/jss.v012.i06
https://doi.org/10.18637/jss.v012.i06
https://doi.org/10.18637/jss.v012.i06
https://doi.org/10.1016/j.foreco.2017.09.043
https://doi.org/10.1016/j.foreco.2017.09.043
https://doi.org/10.1016/j.foreco.2017.09.043
https://doi.org/10.1016/j.foreco.2017.09.043
https://doi.org/10.1016/j.foreco.2017.09.043
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.foreco.2011.11.002
https://doi.org/10.1016/j.foreco.2011.11.002
https://doi.org/10.1016/j.foreco.2011.11.002
https://doi.org/10.1016/j.foreco.2011.11.002
https://doi.org/10.1016/j.foreco.2011.11.002
https://doi.org/10.1016/j.ecolmodel.2007.03.041
https://doi.org/10.1016/j.ecolmodel.2007.03.041
https://doi.org/10.1016/j.ecolmodel.2007.03.041
https://doi.org/10.1016/j.ecolmodel.2007.03.041
https://doi.org/10.1016/j.ecolmodel.2007.03.041
https://doi.org/10.1016/j.foreco.2017.12.008
https://doi.org/10.1016/j.dendro.2008.01.002
https://doi.org/10.1016/j.dendro.2008.01.002
https://doi.org/10.1016/j.dendro.2008.01.002
https://doi.org/10.1016/j.dendro.2008.01.002
https://doi.org/10.1016/j.dendro.2008.01.002
https://doi.org/10.1093/forestry/75.1.25


14 | Irwin et al.

Chadwick AJ, Goodbody TRH, Coops NC. et al. Automatic delin-
eation and height measurement of regenerating conifer crowns
under leaf-off conditions using UAV imagery. Remote Sens (Basel)
2020;12:4104. https://doi.org/10.3390/rs12244104.

Chehreh B, Moutinho A, Viegas C. Latest trends on tree classifi-
cation and segmentation using UAV data—a review of agro-
forestry applications. Remote Sens (Basel) 2023;15:2263. https://doi.
org/10.3390/rs15092263.

Contreras MA, Affleck D, Chung W. Evaluating tree competi-
tion indices as predictors of basal area increment in western
Montana forests. For Ecol Manage 2011;262:1939–49. https://doi.
org/10.1016/j.foreco.2011.08.031.

D’Amato AW, Woodall CW, Weiskittel AR. et al. Carbon conundrums:
do United States’ current carbon market baselines represent an
undesirable ecological threshold? Glob Chang Biol 2022;28:3991–4.
https://doi.org/10.1111/gcb.16215.

Duffy JP, Anderson K, Fawcett D. et al. Drones provide spatial
and volumetric data to deliver new insights into microclimate
modelling. Landsc Ecol 2021;36:685–702. https://doi.org/10.1007/
s10980-020-01180-9.
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