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Abstract
Climate change interacts with ecological processes leading to changes in tree and forest growth rate, biome shifts and species

composition, all of which are influenced by disturbances. This study explores future overarching climate trends of eight of
Canada’s ecozones containing managed forests. For the 2071 to 2100 period, climate projections indicate a warming trend
of up to an additional 5.5 ◦C and an overall increase in annual precipitation. Future trends suggest marked contrast between
coastal and interior forests and polarization between western and eastern forests. Warmer temperatures, accumulating degree-
days above 5 ◦C and frost-free days suggest longer and drier growing seasons and greater risk of drought particularly in
moisture-limited areas such as montane cordillera, taiga shield and boreal shield ecozones. Warmer temperatures and rising
precipitation combined with less snow suggest shorter and wetter future winters. This indicates greater risk of rain-on-snow
and freeze-thaw events, flooding and landslides particularly in coastal ecozones. We discuss how these projections are likely to
result in shifts in dominant species and abundance, which when coupled with the cumulative effects of future disturbances,
is likely to alter future forest dynamics and impact harvestable wood volumes for Canada’s forestry industry.
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1. Introduction
Canada’s managed forests cover more than 225 million ha,

and as one of the top global manufacturers of forest prod-
ucts, they contributed $34.8 billion (1.5%) to Canada’s nom-
inal GDP in 2021 (Natural Resources Canada 2022a). Man-
aged forests are transforming rapidly due to climate change
which is likely to impact harvestable wood volumes, carbon
sequestration potential, and Canada’s forestry industry. Cur-
rent climate projections show warming of up to 5 ◦C by the
end of the century with precipitation regimes expected to
be spatially variable (Bush and Lemmen 2019). Climate inter-
acts with ecological processes that vary depending on forest
type. These interactions result in biome shifts, increases in
biotic and abiotic disturbances, changes to tree and forest
growth rates, and shifts in species abundance and composi-
tion (Gauthier et al. 2014, 2015; Brecka et al. 2018). Forests’
susceptibility and response to one——or a combination of——
these interactions will have significant implications for how
Canadian forests will need to be managed under future cli-
mate change.

Warming across Canada suggests that forests’ susceptibil-
ity to climate change will be heavily influenced by regional
water availability (Girardin and et al. 2016; Vincent et al.
2018; Intergovernmental Panel on Climate Change 2022). In
temperature-limited forests, where soil moisture is able to

withstand greater evapotranspiration demand, gains in tree
growth may be expected (Wang et al. 2023). Forests that re-
ceive relatively high annual precipitation will likely be able
to take advantage of warmer annual temperatures, greater at-
mospheric carbon dioxide (CO2), and longer growing seasons
to promote growth due to greater water availability (Jobidon
et al. 2015; D’Orangeville et al. 2016; Chagnon et al. 2022).
However, greater productivity in response to temperature
may also be transient, until a point in time where excessive
temperatures may cause growth declines due to reduced wa-
ter availability (D’Orangeville et al. 2018). Moisture-limited
forests are likely to see reduced growth rates with warming
temperatures, causing drought stress. Without adequate soil
moisture, fewer carbohydrates for growth are produced and
deplete reserves when drought conditions extend over mul-
tiple growing seasons (Peltier et al. 2023). Risk of drought-
induced mortality is greater in moisture-limited forests when
excessive evapotranspiration demand can cause xylem cavita-
tion and tree death (Chaste et al. 2019). Research suggests that
overall, warming-induced tree growth may promote some
biomass accumulation (Wang et al. 2023) though this will be
exceeded by biomass lost to drought-induced mortality, sug-
gesting an overall net negative effect of climate change on
harvestable wood volume and timber production in estab-
lished forests across Canada (Seidl et al. 2017). It is projected
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that for every degree of annual temperature increase, a re-
duction of net annual aboveground biomass changes from
0.20 to 1.07 Mg ha−1 year−1 across four major forest types
in western Canada. This is particularly true for older forests
and late successional conifer forests, where mortality rates
exceed growth gain (Chen et al. 2016). This reduce not only
harvestable wood volumes for the forest industry but also
the carbon sequestration potential of Canadian forests (Ma
et al. 2012; Zhu et al. 2018). As climate changes, warmth,
moisture availability, and disturbance drive changes in for-
est structure, vegetation change, and species composition
to shift ecological biomes and create new ones (Rehfeldt et
al. 2012). As these biome shifts occur, tree species will be
forced to either adapt to new environmental conditions or
migrate toward more optimal growing conditions (Aitken et
al. 2008). Such shifts of boreal species have already been pre-
dicted for northeastern Canada whereby trees will likely shift
toward northeastern North America to regions of greater an-
nual precipitation (Housset et al. 2015; D’Orangeville et al.
2016). When rates of forest expansion are slower than that
of changing climates, species within their current distribu-
tion range may be unable to adapt to changing conditions
(Aitken et al. 2008; Boisvert-Marsh et al. 2014; Allen et al.
2015). This is already being predicted for the southern tran-
sition zone of the boreal and temperate hardwood forests
across eastern Canada (Stralberg et al. 2018; Brice et al. 2020;
Boulanger and Puigdevall 2021) suggesting greater inter-
species competition resulting in a shift from softwood species
such as spruce (Picea spp.) and fir (Abies spp.) toward hardwood
species, such as birch (Betula spp.), poplar (Populus spp.), and
maple (Acer spp.) (Chaste et al. 2019; Brice et al. 2020; Klesse
et al. 2020).

Forest disturbances will also increase in frequency and
severity with climate change, including insects (Kurz et al.
2008), pathogens (Flannigan et al. 2005; Sturrock et al. 2011),
and fires (Flannigan et al. 2005). Canadian forests are ex-
pected to experience an increase in active fire spread days
by 35%–400% by 2050, particularly in western coastal regions
(Wang et al. 2015) while increasing post-fire regeneration fail-
ure in fire-adapted species (Baltzer et al. 2021). Insect infes-
tations such as the mountain pine beetle (Dendroctonus pon-
derosae) and the spruce budworm (Choristoneura fumiferana)
have amplified across Canada due to recent winter warming
that is no longer cold enough to prevent larvae from over
wintering (Bale and Hayward 2010; Pureswaran et al. 2018).
Forests that are——or most likely to become——moisture lim-
ited are most susceptible to disturbances (Seidl et al. 2017)
and more likely to undergo changes to forest age class struc-
ture post-disturbance to promote younger, faster growing
pioneer species resulting in mixedwood or pure deciduous
stands (Johnstone et al. 2010; Brecka et al. 2018). These inter-
actions between climate change and ecological processes gen-
erate greater uncertainty about ecosystem-based forest man-
agement strategies and their ability to maintain both forest
productivity and the current structure of its associated value
chain (Millar et al. 2007).

For this reason, understanding how climate is expected to
change across Canada in the upcoming century is vital to en-

sure forest managers in both provincial and federal govern-
ments, as well as industry, foresee potential changes in forest
health and productivity, timber products, carbon sequestra-
tion, and climate mitigation potential (Moreau et al. 2022).
While some studies have compared spatial climate projec-
tions for select Canadian species or forest types (McKenney
et al. 2007, 2009; Price et al. 2013; Gauthier et al. 2014;
Taylor et al. 2017), few studies in the last decade (Price et al.
2013) have yet to compare managed forests of all ecozones
across the country. Climate model projections are the pri-
mary means to inform forest managers as to how climate
may change over the next 80–100 years. General circulation
models (GCMs), produced by the Intergovernmental Panel
on Climate Change’s Coupled Model Intercomparison Project
(CMIP6) (Eyring et al. 2019), can be used to project changes
of future climate and thus the environment in which future
forests will be growing. Using empirical evidence of the ef-
fect of climate on forest growth, structure, and composition,
future climate projections allow forest managers to explore
potential changes to forest structure dynamics and future
vulnerability in a changing climate (Torresan et al. 2021).
The result is “climate-smart” approach to short- and long-
term regional forest management decisions that impact both
the harvestable wood volume for the Canadian forest indus-
try and climate change mitigation and adaptation potential
(UNFCCC 2015).

The focus of this study is to summarize overarching cli-
mate trends of climate projections across Canada’s National
Forest Inventory’s 12 forested ecozones with a focus on man-
aged forests within them. Therefore, the objectives are to
(1) generate historical and future projections of multiple
climate variables for the 12 forested ecozones in Canada,
(2) identify overarching future climate trends and compare
these across the eight forest ecozones that contain man-
aged forests, and (3) discuss the implications of future for-
est dynamics including species composition and abundance.
These results can then provide insight for researchers and
forest managers to better understand the possibilities of fu-
ture climate and the implications on forest dynamics for
regional climate-smart management in different ecozones
across Canada.

2. Methods

2.1. Study area
Of Canada’s 15 terrestrial ecozones, 12 are identified by

the National Forest Inventory for reporting on the status and
development of Canada’s forests (Natural Resources Canada
2022b). Excluding the Arctic ecozones, these ecozones con-
tain unique geologic and climatic conditions, supporting var-
ious forms of vegetation and wildlife, and these conditions
are influenced by different forms of human activity. Histori-
cal climate and future projections were generated for these
12 forested ecozones with an additional data subset for the
eight ecozones that contain managed forests (excludes Hud-
son Plains, Taiga Cordillera, and the east and west Taiga
shields ecozones) (Fig. 1; Table 1).
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Fig. 1. The National Forest Inventory’s 12 terrestrial ecozones. Eight ecozones contain managed forested areas that contribute
to Canada’s forestry industry (indicated by hatched lines) and four do not (indicated by an asterisk in the legend). This figure
was created using ArcGIS (version 2.9.2).

Table 1. Canada’s eight forest regions, their locations, and the National Forest Inventory’s corresponding ecozones that contain
managed forested areas, as well as predominant tree species. Adapted from Natural Resources Canada (2022b).

Forest region Location Corresponding ecozones Predominant tree species

Coastal British Columbia Pacific Maritime Western red cedar (Thuja plicata), western hemlock (Tsuga
heterophylla), Sitka spruce (Picea sitchensis), and
Douglas-fir (Pseudotsuga mensiesii)

Montane British Columbia
and Alberta

Montane Cordillera
Boreal Cordillera

Douglas-fir, lodgepole pine (Pinus contorta), ponderosa
pine (Pinus ponderosa), and trembling aspen

Subalpine Engelmann spruce (Picea engelmannii), subalpine fir (Abies
lasiocarpa), and lodgepole pine

Columbia Western red cedar, western hemlock, Stika spruce, and
Douglas-fir

Boreal Western and
central Canada

Taiga Plains Boreal
Plains Boreal Shield
West

White spruce (Picea glauca), black spruce (Picea nigra),
balsam fir, Jack pine (Pinus banksiana), white birch
(Betula papyrifera), trembling aspen (Populus tremuloides),
tamarack (Larix larcina), and willow (Salix spp.)

Great Lakes-St
Lawrence

Central and
southwestern
Canada

Boreal Shield East Red pine (Pinus resinosa), eastern white pine (Pinus strobus),
eastern hemlock (Tsuga canadensis), yellow birch, maple,
and oak

Carolinian/deciduous
Beech (Fagus spp.), maple (Acer spp.), black walnut (Juglans

nigra), hickory (Carya spp.), and oak (Quercus spp.)

Acadian Maritimes Atlantic Maritime Red spruce (Picea rubens), balsam fir (Abies balsamea), and
yellow birch (Betula alleghaniensis)

2.2. Climate data
Climate projections for the 12 forested ecozones (Fig. 1;

Table 1) were generated using ClimateNA (Version 7.3) (Wang
et al. 2016), a software that downscales PRISM (Daly et al.
2008) monthly climate data to scale-free point locations at
800 m × 800 m resolution. Historical climate data were gener-
ated for 30-year climate normals (means) using 1991–2020 as

the reference period. Future climate data were generated for
2071–2100 under scenario SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5 using an eight-GCM ensemble (Mahony et al. 2022).
Projections under SSP3-7.0 scenario were used as the main
dataset for consideration of climate change on forest im-
pact and adaptation research. This accounts for the “business-
as-usual” scenario instead of SSP5-8.5, which assumes coal-
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Fig. 2. Projected changes for 2071–2100 in mean annual (a) temperature (MAT), (b) precipitation (MAP), (c) climate moisture
index (CMI), (d) precipitation falling as snow (PAS), (e) degree-days above 5 ◦C (DD5), and (f) number of frost-free days (NFFD) com-
pared to the 1991–2020 reference period for eight forested ecozones that contain managed forests. Projections were generated
at 800 m resolution using an eight-global circulation model (GCM) ensemble. Shapes and colors indicate means of four shared
socioeconomic pathways (SSPs), and vertical lines denote standard deviation within scenarios generated by the ensemble.

energy dependence and is highly unlikely considering future
socioeconomic trends (van Vuuren et al. 2011; Ritchie and
Dowlatabadi 2017).

Future mean annual values were generated for tempera-
ture (MAT; ◦C), precipitation (MAP; mm), degree-days above 5
◦C (DD5; degree-days), the number of frost-free days (NFFD;
days), precipitation falling as snow (PAS; mm), and Hogg’s
climate moisture index (CMI; mm) for Canada’s forested
forest ecozones. CMI is calculated by subtracting the po-
tential evapotranspiration (PET) from annual precipitation
(CMI = MAP – PET) indicating the ability of a landscape to
maintain adequate soil moisture (Hogg 1997). Larger CMI in-
dicates wet conditions, while smaller CMI indicates drought
conditions.

Mean values for each ecozone were extracted based on
the values of each input raster for both total forested area
and the area found within the boundaries of Canada’s man-
aged forests. Change in projected values was calculated as the
difference between each projection value and the historical
mean of the reference period. Climate projections and cal-

culation of the resulting differences were performed using R
Studio (Version 4.2.1) (R Core Team 2022).

3. Results
Projections of future climate change for managed forests

within eight of the 12 ecozones under four SSP scenarios for
the period of 2071–2100 are shown in Fig. 2. Scenarios SSP1-
2.6 and SSP2-4.5 show more moderate projections with the
greatest variation between means in MAT, DD5, and NFFD.
Scenarios SSP3-7.0 and SP5-8.5 show more extreme projec-
tions but with less variation between them compared to the
other two SSP scenarios. Because SSP5-8.5 assumes the highly
unlikely dependence on coal-energy in future socioeconomic
trends, SSP3-7.0 was chosen as the main scenario for the in-
terpretation of projected change in climate for the eight eco-
zones containing managed forests. The variation within these
projections is indicated by standard deviation from the mean
of the eight GCMs within the ensemble (Tables 2 and 3). Pro-
jected changes are relative to the 30-year mean of 1991–2020,
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Table 2. Projected mean annual climate for 12 forested ecozones across Canada for 2071–2100 under SSP3-7.0 scenario at
800 m resolution.

Mean annual
temperature

(◦C)

Mean annual
precipitation

(mm)

Hogg’s climate
moisture index

(mm)

Precipitation
falling as snow

(mm)
Degree-days
above 5 ◦C

Number of
frost-free days

Pacific Maritime 8.1 (3.8) 3104 (1491) 261 (155) 606 (1024) 1902 (690) 252 (67)

Montane Cordillera 6.2 (2.1) 1002 (437) 45 (54) 335 (242) 1740 (456) 196 (23)

Boreal Cordillera 2.2 (1.7) 814 (637) 38 (7) 331 (423) 1310 (306) 155 (20)

Taiga Cordillera −0.7 (1.3) 702 (227) 33 (24) 301 (126) 1112 (243) 133 (13)

Taiga Plains 0.9 (2.0) 428 (119) −0.06 (11) 149 (41) 1580 (298) 157 (14)

Boreal Plains 5.8 (1.1) 524 (71) −8.7 (9) 117 (18) 2216 (224) 189 (6)

Taiga Shield West −0.6 (1.7) 408 (71) 7.0 (7) 147 (19) 1380 (236) 147 (14)

Taiga Shield East 2.1 (1.1) 909 (171) 59 (15) 329 (75) 1290 (201) 145 (15)

Boreal Shield West 4.9 (1.7) 640 (125) 10 (11) 157 (33) 2181 (269) 179 (8)

Boreal Shield East 6.7 (2.1) 1132 (158) 60 (24) 261 (105) 2131 (437) 184 (17)

Hudson Plains 4.1 (1.7) 690 (123) 23 (7) 196 (22) 1877 (259) 165 (18)

Atlantic Maritime 9.7 (1.3) 1301 (126) 67 (16) 133 (73) 2593 (268) 211 (20)

Numbers in parentheses indicate standard deviation from the mean. Shaded rows indicate ecozones that do not contain managed forests.

Table 3. Projected mean annual climate for managed forests within eight of the ecozones across Canada for 2071–2100 under
SSP3-7.0 scenario at 800 m resolution.

Mean annual
temperature

(◦C)

Mean annual
precipitation

(mm)

Hogg’s climate
moisture index

(mm)

Precipitation
falling as snow

(mm)
Degree-days
above 5 ◦C

Number of
frost-free days

Pacific Maritime 8.2 (3.0) 2991 (1290) 249 (132) 487 (573) 1902 (615) 253 (58)

Montane Cordillera 6.4 (2.0) 980 (435) 42 (54) 322 (237) 1776 (454) 198 (22)

Boreal Cordillera 3.2 (1.0) 891 (331) 47 (39) 350 (210) 1262 (297) 164 (11)

Taiga Plains 4.0 (0.9) 545 (77) −1.5 (9) 145 (14) 1925 (145) 177 (6)

Boreal Plains 5.8 (0.9) 537 (69) −7.0 (8) 120 (17) 2184 (201) 189 (5)

Boreal Shield West 6.0 (1.5) 699 (140) 11 (12) 158 (41) 2347 (248) 182 (7)

Boreal Shield East 7.1 (1.8) 1092 (130) 51 (19) 255 (89) 2284 (342) 187 (13)

Atlantic Maritime 9.7 (1.5) 1342 (128) 72 (15) 129 (82) 2557 (279) 213 (22)

Numbers in parentheses indicate standard deviation from the mean.

which is shown in Fig. 2 for all 12 forested ecozones. His-
torical climate means for managed forests can be found in
Table S1.

Projected changes in climate across Canada’s forest eco-
zones are shown in Fig. 3. Future projected values for the
12 forested ecozones are shown in Table 2, and managed
forested areas are shown in Table 3. In ecozones that con-
tain both managed and unmanaged forests, areas of managed
forests show greater indications of warming, particularly for
the boreal and taiga plains, which are 2.8 and 2.0 ◦C warmer
in the managed forests, respectively, compared to the rest of
the ecozone area.

Of the eight ecozones that contain managed forests, future
projections revealed rising MAT to be the most extreme in
the boreal shield west (Fig. 3a), increasing by a factor of 10
and projected to reach 6.0 ◦C by 2100. By that time, the Pa-
cific and Atlantic maritime ecozones will have the warmest
annual temperatures of all ecozones after a twofold increase
in MAT, reaching 8.2 (±3.0) ◦C and 9.7 (±1.5) ◦C, respectively.
Managed forests in the boreal cordillera ecozone will remain
the coldest with a future MAT of 3.2 (±1.0) ◦C by 2100, up
from a 30-year mean of −0.6 ◦C.

Future patterns of MAP are anticipated to be variable across
ecozones (Fig. 3b) with an average projected increase of 14%
across all managed forests by 2100: the equivalent of an addi-
tional 141 mm per year. Within managed forests, MAP in the
taiga plains is projected to decrease by 21%, the equivalent
to 153 mm less, for a MAP of 545 (±77) mm. By comparison,
MAP in the boreal cordillera is projected to increase by 80%,
the equivalent of an additional 404 mm, for an annual total
of 891 (±331) mm. Of total MAP, projections show an overar-
ching trend of reductions in the proportion of precipitation
falling as snow across all ecozones (Fig. 3e). The Atlantic mar-
itime ecozone can expect a 63% reduction, or 222 mm, for
an annual total 129 (±82) mm of snow, whereas the boreal
and taiga plains ecozones are expected to maintain relatively
consistent PAS with a slight reduction of 5% for an annual
120 (±17) and 145 (±14) mm of snow, respectively. The mon-
tane cordillera ecozone, which historically has received al-
most equal amounts of annual snow and rain (48% PAS), is
projected to see PAS making up only 33% of annual precipita-
tion by 2100 for a total of 322 (±237) mm of snow.

Changes in MAT and MAP are accompanied in corre-
sponding shifts of CMI (Fig. 3c). The boreal plains eco-
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Fig. 3. Future projections for six climate variables relative to their 30-year historic normals from 1991 to 2020 (gray box inserts)
across Canada’s forested ecozones (colored area) and managed forests (colored and hatched area). Projections are for future
mean annual temperature (MAT; ◦C) (a), mean annual precipitation (MAP; mm) (b), mean annual climate moisture index (CMI;
mm) (c), degree-days (dd) above 5 ◦C (d), precipitation falling as snow (PAS; mm) (e), and number of frost-free days (NFFD; days)
(f) for 2071–2100 under SSP3-7.0 scenario at 800 m resolution. Figures were created using ArcGIS (version 2.9.2).

zone is expected to experience the most substantial drying
with a projected 217% decrease from an annual 6.0 mm
to −7.0 (±8) mm. There, along with the taiga plains (−1.5
[±9] mm by 2100), will be two ecozones with annual CMI
values below zero by the end of the century. The Pa-
cific maritime ecozone, historically the wettest region in
Canada, is projected to have a 12% increase, the equiva-
lent of an additional 26 mm for a mean annual CMI of
223 mm.

Projections reveal a consistent increase in the number of
degree-days and frost-free days across all ecozones (Fig. 3d
and 3f). On average, across Canada, an additional 879 degree-
days and 47 frost-free days are projected by 2100 for an an-
nual total of 2071 degree-days and 192 frost-free days per
year. The most significant relative changes in degree-days will
occur in the boreal cordillera ecozone, with a 130% increase
(from 548 to 1262 degree-days) with a corresponding 42% in-
crease of frost-free days (from 115 to 164). By comparison, the
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Atlantic maritime ecozone will experience the smallest rela-
tive changes to degree-days, with a 59% increase (from 1608
to 2557 degree-days) and 35% increase in frost-free days (from
158 to 213).

4. Discussion
Canada’s managed forests are projected to face rising MAT,

which has been commonly reported in the literature (Vincent
et al. 2018; Intergovernmental Panel on Climate Change
2022). In conjunction with rising number of degree-days and
frost-free days, this suggests longer summers and shorter
winters, supported by previous research that has found an
additional 15 days have been added to the growing season
since the 1948–2016 period (Vincent et al. 2018). An overall
increase in MAP is expected across the country, though re-
mains heterogeneous by region. Warmer temperatures, when
combined with additional MAP, result in a reduced propor-
tion of annual precipitation falling as snow. Managed forests
that are currently temperature-limited may see gains in for-
est productivity from warmer temperatures and CO2 fertiliza-
tion (Jobidon et al. 2015), though perhaps only temporarily
(D’Orangeville et al. 2018). By comparison, managed forests
that are currently——or likely to become——moisture limited are
likely to face reduced growth rates (Chagnon et al. 2022) in
addition to the rising risk of drought and drought-induced
mortality (Boucher et al. 2018). Greater MAP suggests a po-
tential opportunity to provide additional spring moisture but
may also increase rain-on-snow risks throughout the winter
(Daniels et al. 2011).

4.1. Wetter coasts may maintain growth rates
but with more rain-on-snow events

On Canadian coasts, Pacific and Atlantic maritime are the
two wettest forest regions, with a previous average of 2566
and 1232 mm of MAP, respectively. In both ecozones, rising
MAP will help to meet greater evapotranspiration demand
of warmer temperatures, allowing trees to increase growth
and stands to maintain regional productivity (Vaughn and
Taylor 2022). However, gain in growth could be outweighed
by tree mortality caused by warmer temperatures in older,
more vulnerable forests and growth declines due to reduced
snow cover (Daniels et al. 2011). Reduced snow cover and a
greater number of rain-on-snow and freeze-thaw events can
have large implications for tree growth (Moreau et al. 2020).
Loss of snow cover has been found to reduce the protective in-
sulation layer that protects fine root dynamics, promotes nu-
trient exchange, and maintains overwintering survival, par-
ticularly for conifers (Girardin and et al. 2016). A lack of snow
cover can also result in soil freezing and subsequent loss in
aboveground biomass (Reinmann et al. 2019) and lower over-
wintering survival (Yang et al. 2020). Reduced snow cover may
also exacerbate the effects of freeze-thaw events, which are
expected to increase in both frequency and duration across
Canada in the upcoming century (Solomon et al. 2007) and
can cause freezing injuries to both roots and emerging buds
in early spring (Inouye 2008). Such risks are greater at high-
altitude and mountainous forests and more severe in areas

that have recently undergone other forms of disturbance,
such as fire (Bergeron et al. 2010; Jordan 2015). Greater rain-
on-snow events can also generate greater runoff than rain
alone, and when combined with greater winter precipitation
will increase the risk of flood events (Marks et al. 1998). Shifts
in snowpack runoff to rain pack runoff can also increase land-
slide risk, as well as debris flow (Guthrie et al. 2010). This can
also lead to the flooding and conversion of forested land area
to wetlands, which is also threatened in conjunction with
thawing of permafrost present in the boreal cordillera eco-
zone (Carpino et al. 2018). Runoff, flooding, and landslides
in British Columbia have been found to have a direct loss
of productive forested land at an estimated amount of $16–
$48 million year−1 (Porter et al. 2019). Species most at risk
are likely to be those at northern latitudes and higher eleva-
tions such as Jack pine (Pinus banksiana), lodgepole pine (Pi-
nus contorta), alpine larch (Larix lyallii), Pacific silver fir (Abies
amabilis), subalpine fir (Abies lasiocarpa), and yellow-cedar (Cal-
litropis nootkatensis) (Buma et al. 2016).

4.2. Western Canada can expect the greatest
relative drying

Further to the interior, the montane cordillera, taiga
plains, and boreal plains ecozones are expected to see the
largest relative reductions in CMI across Canada (Fig. 3c).
Annual CMI in the montane cordillera will remain positive
at 42 mm annually, though the taiga and boreal plains are
projected to have annual CMI fall below zero (Table 3). This
region has been previously identified at high risk of mois-
ture deficits that could significantly slow growth rates and
increase the risk of drought-induced mortality (Hogg and
Bernier 2005). Although the taiga plains contain only a small
area of managed forests, slower growth of white spruce (Picea
glauca) (Aubin et al. 2018) and western red cedar (Thuja pli-
cata) in the interior of British Columbia has been observed
across the montane cordillera and boreal plains (Andrus et
al. 2023) and could continue in these three ecozones. Across
Canada, 43% of the boreal forest has already experienced
drought-induced mortality from 1970 to 2020, 71% of which
was from the western boreal forests (Liu et al. 2023). As cli-
mate becomes warmer and drier in boreal zones, a greater
proportion is likely to experience drought with a shift to-
ward more drought-tolerant species composition. This has al-
ready been seen in the greater abundance of interior Douglas
fir (Pseudotsuga menziesii) and Ponderosa pine (Pinus ponderosa)
in the boreal shield west and which are likely to continue
to expand into the interior plateau (Searle and Chen 2017).
Species that are unable to successfully compete for soil water
are likely to attempt a northern migration toward regions
of greater moisture availability. For this reason, the poten-
tial climate niche of tree species in British Columbia is pro-
jected to gain an additional 100 km per decade, leading to a
significant shift of sub-boreal and montane climate regions
(Hamann and Wang 2006). This includes the potential shift
away from commercially important conifer species (such as
subalpine fir, white spruce, and black spruce ([Picea mariana])
that are likely to be outcompeted by southern species such
as Douglas fir and lodgepole pine (Searle and Chen 2017).
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Though moderate winter warming has been found to be tem-
porarily beneficial for the growth of pines and high-elevation
hardwoods such as trembling aspen (Populus tremuloides) and
paper birch (Girardin et al. 2022), gains in productivity are
likely not be enough to offset the loss that occurs at higher
elevations where loss of mountainous habitat of white bark
pine, cypress, and mountain hemlock occurs at a faster rate
(Hamann and Wang 2006).

4.3. Contrasting projections for east and west
boreal shields

The boreal shield west is likely to undergo similar changes
to the boreal plains, though it contains a smaller area of man-
aged forests. The boreal shield east is expected to see the
largest relative warming (an increase of 5.5 ◦C by 2100) but in
addition to greater MAP, allowing annual CMI to remain rel-
atively unchanged (at 51 mm annually) by the end of the cen-
tury. Species within this ecozone that were previously tem-
perature limited are therefore likely to see greater growth
in the future, which has been predicted for yellow birch (Be-
tula alleghaniensis), white pine (Pinus strobus), eastern hemlock
(Tsuga canadensis), red maple (Acer rubrum.), sugar maple (Acer
saccharum), red oak (Quercus rubra), and American beech (Fagus
grandifolia) (Taylor et al. 2017). However, any gain in produc-
tivity may be transitory until these forests too become mois-
ture limited (D’Orangeville et al. 2018). Still, to seek out a rel-
atively cooler and wetter refugium, it is expected that boreal
species will begin migrating to northeast (D’Orangeville et al.
2016). Tree species along the southern boreal-temperate hard-
wood transition line, particularly in Ontario and Quebec, are
likely to be outcompeted by more drought-tolerant species
leading to a potential deborealization in the region and a shift
from softwood to hardwood species (Taylor et al. 2020). Man-
aged forests in Atlantic maritime ecozones have also been
found to be increasing abundance of warm-adapted temper-
ate species and replacing cold-adapted boreal conifers includ-
ing greater competition from American beech and red maple
and lower abundance of sugar maple (Taylor et al. 2017). This
potential gain of growth and carbon sequestration by species
in the boreal shield east is still unlikely to counteract the loss
of older forest to drought-induced mortality in other parts of
the country (Seidl et al. 2017).

4.4. Impacts of climate change–disturbance
interactions on forest composition

Climate change could affect both the ecology and the har-
vestable wood volume of forests across Canada with altered
tree growth rates, biome shifts, and the rising frequency and
intensity of biotic and abiotic disturbances. The cumulative
effect of such future disturbance- and drought-induced tree
mortality is said to be Canada’s largest threat to harvestable
wood volumes by the end of the century (Seidl et al. 2017;
Boucher et al. 2018; Brecka et al. 2018). Overarching trends
of longer and drier summers, as well as warmer and wetter
summers, indicate a rising risk of drought (Chaste et al. 2019),
fires (Flannigan et al. 2005), forest pests (Kurz et al. 2008;
Zhang et al. 2014), wind throw (Saad et al. 2017), and land
slides (Porter et al. 2019). Cumulative loss of biomass to dis-

turbance threatens to reduce harvestable wood volumes by
as much as 50% by 2150 (Boulanger and Puigdevall 2021).

Stand-replacing disturbances not only result in the loss of
aboveground harvestable biomass but also the loss of mature
and oldest forests such as spruce, eastern hemlock, and Amer-
ican beech to younger regenerating stands such as poplar,
paper birch (Betula papyrifera), maple, and balsam fir. Such
shifts have already been noticed in eastern Canada with re-
duced abundance of trembling aspen, red maple, and white
pine (Saad et al. 2017; Danneyrolles et al. 2019; Boulanger
and Puigdevall 2021). These species have been found to be
more abundant in areas after disturbance and result in a
shift toward greater mixedwood composition that contains
less harvestable biomass than their pure stand counterparts
(Saad et al. 2017; Danneyrolles et al. 2019; Boulanger and
Puigdevall 2021). This is particularly true after a pest infes-
tation where a single species is mostly removed from the
landscape (Amoroso et al. 2013; Ministère des Forêts de la
Faune et des Parcs 2015). The resulting younger forests are
composed of less biomass unable to compensate for the loss
of older forests (Ma et al. 2012; Dymond et al. 2016; Seidl et
al. 2017). Future post-disturbance stands may also be com-
posed of fewer commercially relevant tree species making
it difficult for forest managers to supply mills with mature
and harvestable wood (NRTEE 2011; Gauthier et al. 2015;
McKenney et al. 2016). This could be particularly problem-
atic in boreal forests, for example, where later-successional
conifers such as spruce and fir are preferred for paper and
lumber (Searle and Chen 2017; Brecka et al. 2018). Though
mixedwood stands may be less vulnerable to future distur-
bances such as pest infestations by reducing dominant host
abundance (Bouchard et al. 2006) and limiting fire spread
(Girardin et al. 2013; Marchal et al. 2017, 2020), the conse-
quential species composition may be problematic for indus-
tries that rely on single species harvesting, particularly if
their forests are in transition zones or are highly suscepti-
ble to disturbance. Consequently, an uncertain future arises
whereby younger post-disturbance stands could become a net
carbon source with a net loss of biomass and timber produc-
tion by 2100 (Ma et al. 2012; Zhu et al. 2018).

5. Conclusion
Here, we present overarching climate trends across

Canada’s forested ecozones containing managed forests.
Across Canada, warming and rising annual precipitation can
be seen alongside an overall reduction of precipitation falling
as snow and the increase in the number of degree-days above
5 ◦C and frost-free days. Marked contrasts were observed
across several ecozones, particularly between dry coastal and
interior forests and the polarization between western and
eastern forests. Temperature-limited forests found in eco-
zones such as the boreal shield east and Atlantic maritime
have the potential to temporarily increase forest growth rates
while promoting northeastern migration toward greater re-
source availability. However, this is likely to concur with and
greater risk of pest overwintering success and windthrow.
This is true for forests in wetter than average ecozones such
as those in the Pacific maritime, the boreal cordillera, and
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the Atlantic ecozones though with the additional risk of rain-
on-snow events that increase vulnerability to flooding, land-
slides, and windthrow due to greater annual precipitation.
In moisture-limited forests, such as those in the montane
cordillera, boreal plains and taiga plains ecozones of west-
ern Canada, warmer future temperatures are likely to re-
duce growth rates and promote species compositional shifts
toward more drought-tolerant species. These climate condi-
tions are likely to increase drought events (and thus drought-
induced mortality), as well as forest fires. Of course, projec-
tions that are further into the future coincide with reduced
accuracy and limits to adaptation (Dessai et al. 2009). How-
ever, the cumulative risk of drought, fire, and forest pests is
undoubtedly to be the largest challenge in maintaining forest
productivity against Canada (Boulanger and Puigdevall 2021).
Though not all land area indicated in managed forests re-
gions is actively managed, changes to forest health and com-
position limit potential forest operation expansion opportu-
nities and increases the risk of disturbance to nearby man-
aged areas. As biomass of future forests lost to disturbances
will outweigh any beneficial growth as a result of climate
change (Ma et al. 2012; Dymond et al. 2016; Seidl et al. 2017),
adaptive forest management practices that promote forest
resistance and resilience will be key to sustainable forestry
practices as well as a continued contribution to Canada’s
GDP. Overarching climate trends should be considered in fu-
ture regional forest management planning and in conjunc-
tion with bioclimatic models to map ongoing changes to
species distribution (Rehfeldt et al. 2015; Schneider et al.
2016) and growth and yield models (Boulanger et al. 2017)
for projections of future wood volumes.
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