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Abstract

Increasing temperature and changes in water dynamics are bringing uncertainty regarding the future productivity of boreal forests,
even in the absence of stand-replacing disturbances. There is accumulating evidence that water deficits caused by warmer summer
temperatures are linked to decreases in the growth rate of boreal tree species in some regions. In this context, it is essential to provide
forest professionals with a means of monitoring net forest growth rates in undisturbed areas and at the scale of a management unit
in order to determine where and when changes in growth are taking place. This is challenging using conventional forest inventory
approaches. In this study, we use Landsat time series and data from permanent sample plots (PSP) to develop spatially explicit estimates
of annual net basal area growth at a 30-m spatial resolution for a forest management unit in Canada. An ordinary least square
regression model was developed using data from 120 PSPs and validated on an independent set of 60 PSPs, with R2 values of 0.61
and 0.58, respectively. Applying the model over a 586 607-ha study area revealed considerable temporal and spatial variability in the
predicted growth rates and their evolution through time. There was an overall decline in predicted growth rates over time, with this
trend corroborated by the PSP data and attributed to the ageing demographics of the forests in the study area. This variability was
related to forest development stage, species composition, and structural attributes derived from light detection and ranging (LiDAR).
The information generated by the suggested approach can help to improve yield predictions, optimize rotation lengths, and allow for
the identification of target areas where silvicultural interventions aimed at maintaining or enhancing growth could be conducted.
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Introduction
Boreal forests are amongst the largest ecosystems on earth
(Brandt et al. 2013) and contain a third of the global terrestrial
biogenic carbon stock (Pan et al. 2011). A large part of the boreal
forest biome hosts management activities that account for a
third of the lumber produced worldwide (Gauthier et al. 2015).
In Canada, ∼70% of the forest extent lies within the boreal
zone, with the contiguous boreal forest covering a total area of
270 Mha (Brandt et al. 2013). This geographical extent makes it
a particularly challenging ecosystem to manage, especially in
the context of climate change. In particular, increasing rates of
disturbances and tree mortality (Peng et al. 2011; Seidl et al. 2017)
as well as increasing temperature and changes in water dynamics
will alter the growth response of boreal forests (D’Orangeville et al.
2018; Girardin et al. 2016b), bringing uncertainty regarding their
future productivity.

Although boreal tree species can benefit from a lengthening
of the growth season and increased CO2 levels (D’Orangeville
et al. 2018; Subedi and Sharma 2013), the rapid changes in envi-
ronmental conditions may be outpacing the ability of species
to adapt, which could result in forested ecosystems where the
species composition is no longer in equilibrium with the climate
(Huang et al. 2010). There is accumulating evidence that warmer
summer temperatures are causing increased water deficits in

some regions, linked to decreases in the growth rate of black
spruce [Picea mariana (Mill.) B.S.P.], the most abundant tree species
in the boreal zone (Chagnon et al. 2022; D’Orangeville et al. 2018;
Girardin et al. 2016b). The accumulation of drought events have
already caused increased mortality rates in black spruce forests
(Peng et al. 2011; Sánchez-Pinillos et al. 2022). Jack pine (Pinus
banksiana Lamb), a fire-adapted species known for colonizing xeric
sites, has also experienced a generalized growth decline in eastern
Canada over the last decades, attributed to increased water stress
(Dietrich et al. 2016; Girardin et al. 2012).

Whilst the net aboveground biomass (AGB) of Canada’s
forested ecosystems increased between 1984 and 2016, growth
rates over the undisturbed persistent forests have been highly
variable (Wulder et al. 2020). Observed changes in growth are
influenced by multiple factors such as species composition,
stand age and development stage, structural attributes, and site
characteristics (Dietrich et al. 2016; D’Orangeville et al. 2018;
Mamet et al. 2015; Marchand et al. 2019). Understanding what
growth changes have already occurred and predicting future
changes in this ecosystem is therefore very difficult, but crucial.
Reduction in carbon assimilation rates could offset the effect of
strategies aiming to increase the forest carbon sink (Kurz et al.
2008; Seidl et al. 2014) and eventually lead to reductions in the
timber supply (Brecka et al. 2018; McDowell et al. 2020).
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To manage risks associated with the uncertain growth response
of trees across the landscape, forest practitioners will increasingly
need to rely on adaptive silvicultural actions to promote more
resistant and resilient forest stands (Achim et al. 2022; Gardiner
and Moore 2014; Moreau et al. 2022). In this context, it is essential
to provide forest professionals with a means of monitoring net for-
est growth in undisturbed areas and at the scale of a management
unit in order to determine where and when changes in growth
are taking place, which is challenging using conventional forest
inventory approaches (Bowman et al. 2013; Gillis et al. 2005).

Remote sensing technologies can provide temporally continu-
ous and spatially contiguous coverage of forest condition. With an
analysis-ready image archive dating back to 1984 and a moderate
spatial resolution (30 m), the high radiometric and geometric
qualities of the Landsat TM, ETM+, and OLI sensors provide a
robust basis for the characterization of change in boreal forests
at both global and local scales (Sulla-Menashe et al. 2018). These
characteristics have made Landsat imagery a primary source of
data for characterizing changes in forest condition (Banskota et al.
2014; Wulder et al. 2022). Capitalizing on the known relationships
between spectral indices and the physiological responses of trees,
several studies have utilized Landsat data to investigate gradual
changes in forest productivity (e.g. Vogelmann et al. 2016), model
changes in forest biomass dynamics (e.g. Gomez et al. 2015), and
identify declining stands (Czerwinski et al. 2014). Whilst satellite
imagery allows for the observation of changes over time, light
detection and ranging (LiDAR) provides detailed wall-to-wall infor-
mation on forest structural attributes and development stage
(Baltsavias 1999; Lefsky et al. 2002; Wulder et al. 2012). Using
LiDAR in combination with satellite imagery has proven useful
for extending the spatial and temporal coverage of LiDAR data
sets (Matasci et al. 2018; Zald et al. 2016), and offers the possibility
to better understand patterns of growth across boreal forests in
the last decades and relate them to the existing forest structure,
generating useful information for the implementation of efficient,
adaptive silvicultural practices (Achim et al. 2022).

Our overall objective was to use Landsat time series data to
develop spatially explicit estimates of net basal area growth at a
30-m spatial resolution for a forest management area in Ontario,
Canada. We then examined the predicted growth rates in the
context of forest development stage, species composition, and
structural attributes derived from LiDAR and discuss the potential
of the proposed approach to provide relevant information for the
implementation of adapted forest management practices.

Methods
The current study comprises several methodological stages that
involve relating field measurements of forest growth with vari-
ables derived from Landsat data. The annual net growth rate of
conifer-dominated stands was first determined using repeated
measurement data from permanent sample plots located in the
boreal zone of eastern Canada. Subsequently, a model selection
approach was used to identify the optimal set of Landsat-derived
variables to construct a predictive model for net forest growth.
This model was then applied to a forest management unit, which
was subdivided into forest-type examples with unique structural
attributes using LiDAR data. Model predictions were then exam-
ined in relation to forest composition and structure.

Study area
The Romeo Malette Forest (RMF), located in Ontario, Canada
(Fig. 1), covers 586 607 ha within the Lake Abitibi ecoregion in the

Ontario Shield ecozone (Wester et al. 2018). The main tree species
in this forest management unit include black spruce, jack pine,
white spruce [Picea glauca (Moench) Voss], poplar (Populus spp.)
and white birch (Betula papyrifera Marshall) with components of
balsam fir [Abies balsamea (L.) Mill], cedar (Thuya spp.), Eastern
larch [Larix laricina (Du Roi) K. Koch], and white and red pines (Pinus
strobus L. and Pinus resinosa Soi ex. Aiton). The area is under active
forest management by a sustainable forest license holder. The
primary harvested species are black spruce, jack pine, balsam fir,
and poplar, for a total harvested volume of 2 935 969 m3 between
2012 and 2019. The RMF can be considered as a relatively young
forest, with, as of 2023, a median age of 78 years, and only 5%
of the forested area being older than 133 years of age (Bilyk et al.
2021).

The mean annual temperature in the area is 1.8◦C and the
area receives 773 mm of precipitation annually, based on the
historical mean for the period 1981–2010 extracted from Cli-
mateNA (Wang et al. 2016). The disturbance regime in the study
site is characterized by wildfire, windthrow, and insect defolia-
tion mainly from the spruce budworm [Choristoneura fumiferana
(Clem.)] and forest tent caterpillar (Malacosoma disstria Hübner)
(Urquizo et al. 2000). By 2050, according to projections made using
a 13 global circulation model ensemble and averaged under four
shared socioeconomic pathways (i.e. SSPs 1–4) scenarios (Mahony
et al. 2022), both the minimum and maximum temperatures are
expected to increase by 2.9◦C in this region. Warmer summers
with no change in precipitation and warmer winters with less
precipitation falling as snow could increase the risk of drought
and vulnerability to forest pests (Wotherspoon et al. 2022).

Data from permanent sample plots
Data on forest growth were gathered from permanent sample
plots located within the RMF and in adjacent forest manage-
ment units with high densities of PSP (Fig. 1). The 11.28-m-radius
(400 m2) circular plots are part of the network of permanent
field plots periodically measured within the growth and yield
programme from the Ontario Ministry of Natural Resources and
Forestry (Hayden 1995). The current study focused on stands
containing the dominant coniferous species in this region. We
only selected plots in which >50% of the basal area at the time
of the first measurement was composed of black spruce, jack
pine, and balsam fir. We also excluded plots in which >20% of
the basal area was composed of deciduous species. This threshold
was set to avoid spectral inconsistencies due to changes in species
composition during the measurement intervals, which are known
to generate trends that are not related to forest growth and
productivity, but rather to succession or disturbances (Fiore et al.
2020). We initially selected 493 plots that were measured at least
twice between 1993 and 2018, from which 169 were excluded due
to the mixed species composition. The candidate plots were addi-
tionally filtered to exclude all plots that were disturbed during
the measurement interval, due to harvesting, silvicultural treat-
ments, or non-stand replacing disturbances. Finally, we ensured
that the forest surrounding the plots was homogeneous within a
radius of 80 m, resulting in a final number of 180 plots (Fig. 1).

At each plot, the crown class and DBH of every tree with a
minimum DBH of 2.5 cm were recorded in accordance with the
Ontario growth and yield programme reference manual (MNRF
2016). To derive an estimate of the current growth conditions,
we used tree-level measurements from the earliest and latest
measurement to calculate the plot-level annual net basal area
increment, hereafter referred to as the net growth, in the interval
between the visits, which ranged from 5 to 24 years (median of
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Table 1. Characteristics of the permanent sample plots included in the development of the model at the time of the first and last field
measurements.

Basal area
(m2 ha−1)

Stem density
(stem ha−1)

Mean DBH
(cm)

Composition (% BA)

Black spruce Jack pine Balsam fir American larch Deciduous

First measurement
Average 22.8 2567 11.5 58.7 79.6 8.0 6.0 2.9
Min 3.2 400 4.4 0.1 0.1 0.1 0.1 0.0
Max 50.4 6925 21.5 100.0 100.0 100.0 39.6 18.1
Last measurement
Average 27.1 2847 11.7 53.6 74.5 6.4 6.8 3.4
Min 5.8 1000 4.3 0.1 0.0 0.0 0.1 0.0
Max 53.3 7675 21.1 100.0 100.0 78.6 45.5 18.0

Mean DBH corresponds to the root mean square DBH at the plot level.

Figure 1. (a) Location of the RMF in Canada. (b) Boundary of the RMF and location of the permanent sample plots used in model development.

10 years). The net growth consists of the basal area growth of
trees that survived between the two measurements plus the basal
area of trees that reached the DBH threshold of 2.5 cm during the
interval, from which we deduce the basal area of trees that died in
that same period. A net growth rate in m2 ha−1 yr−1 was then cal-
culated for each plot by dividing the net basal area growth by the
number of growing seasons between the two field measurements.
The median net growth rate measured in the selected plots was
0.52 m2 ha−1 yr−1 (standard deviation = 0.38 m2 ha−1 yr−1).

Landsat surface reflectance composite time
series
We created annual, gap-free, best-available pixel surface reflectance
composites (BAP, White et al., 2014) over the entire study site for
the period 1984–2021. BAPs are created from Landsat 5 TM, Land-
sat 7 ETM+, and Landsat 8 OLI orthorectified and atmospherically

corrected surface reflectance images, by selecting the best pixel
based on the proximity to a target date, distance to clouds and
cloud shadows, atmospheric quality and acquisition sensor, and
by subsequently filling data gaps if no valid observation was
available for a given pixel (Hermosilla et al. 2015; White et al.
2014). Only Landsat observations acquired between 1 July and 30
August were used to create the composites.

From the BAP composites, a time series of selected vegetation
indices were extracted (VI, Table 2) and averaged over a 3 × 3 pixel
window centred over each of the permanent sample plots, for
the period corresponding to the interval between the first and
last field measurements. This window size was chosen to account
for the limited accuracy of the plots’ geolocation and ensured
that the extracted spectral values would be representative of the
actual canopy condition at the plot location. Among the selected
vegetation indices for the current study was the normalized burn
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Table 2. Vegetation indices, equations, and references used in the current study.

Vegetation index Equation Reference

Normalized difference vegetation index (NDVI) =(NIR − Red)/(NIR + Red) (Tucker 1979)
Normalized burn ratio (NBR) =(NIR − SWIR2)/(NIR + SWIR2) (Key and Benson 2006)
Tasselled cap wetness (TCW) =0.0315 ∗ Blue + 0.2021 ∗ Green +0.3102 ∗ Red +0.1594 ∗ NIR –

0.6806 ∗ SWIR1 – 0.6109 ∗ SWIR2
(Crist 1985)

Tasselled cap angle (TCA) = arctan (TCG/TCB)
TCG =−0.1603 ∗ Blue – 0.2819 ∗ Green – 0.4934 ∗ Red +0.7940 ∗

NIR – 0.0002 ∗ SWIR1 – 0.1446 ∗ SWIR2
TCB = 0.2043 ∗ Blue +0.4158 ∗ Green +0.5524 ∗ Red +0.5741 ∗

NIR + 0.3124 ∗ SWIR1 + 0.2303 ∗ SWIR2

(Crist 1985; Powell et al. 2010)

ratio (NBR), a normalized difference of the near-infrared (NIR)
and second shortwave-infrared Landsat bands (SWIR2) and has
been proven useful in monitoring post-disturbance recovery not
only after fire but also after harvesting, even in the case of non-
stand replacing disturbance events (White et al. 2017). Photosyn-
thetically active vegetation shows a higher reflectance in the
near-infrared region and a lower reflectance in the shortwave
infrared regions (Asner 1998) compared to non-photosynthetic
and unhealthy vegetation, making it an appropriate candidate
for the monitoring of forest growth processes, which involves
changes in the amount of photosynthetically active vegetation
through the stages of development of a stand and in function
of the mortality rates. Indices derived from the tasselled cap
transformation (TCT, Crist and Cicone 1984) combine the infor-
mation contained in six Landsat bands. TCT derived-indices, most
notably the tasselled cap wetness (TCW) and tasselled cap angle
(TCA), have been associated to the density of the forest cover and
have been successfully used to measure subtle forest change and
to retrospectively estimate forest structural attributes (Matasci
et al. 2018; Zald et al. 2016), making them relevant as tools to
monitor growth even in the absence of disturbances. The normal-
ized difference vegetation index (NDVI), relying on the NIR and
red Landsat bands, is a well-known indicator of the amount of
photosynthetically active vegetation, which is strongly absorptive
in the red region of the spectrum (Tucker 1979). Although the
NDVI is subject to saturation and is sensitive to the presence of
broadleaved vegetation in boreal environments (Fiore et al. 2020;
Sulla-Menashe et al. 2018), it has been used in several broad-
scale studies on the effect of climate change on the growth of
boreal forests (Beck and Goetz 2011; Girardin et al. 2016a) and
was included in the current study to assess its performance for
measuring the net basal area growth in this ecosystem.

Two categories of predictors were derived from the time series.
The first category comprises the value of the VIs on the year of the
first field measurement, hereafter called initial value. The second
category represents the slope of the VIs over the interval between
measurements and we used the Theil Sen slope estimator (Sen
1968; Theil 1950) as it has been shown to be robust against outliers
and noise and has been used previously in the analysis of time
series of satellite images (Bolton et al. 2020; Czerwinski et al. 2014;
Rogers et al. 2018).

Modelling of the net basal area growth rate
We relied on a model selection procedure based on the second-
order Akaike information criterion (AICc) to identify the best
model and associated predictors from a set of candidates using
the AICcmodavg package (Mazerolle 2020) in the R programming
environment. Candidate models comprised one to three of the
Landsat-derived predictors (Table 2), avoiding the inclusion of

highly correlated variables (Pearson’s R ≥ 0.8). In the current study,
model predictions were generated on a subset of the area where
the training data were collected (i.e. geographic interpolation).
To ensure the representativeness of the training data set, plot
selection needs to be based on a form of random selection of the
observations, in which all available observations had a greater
than zero chance of being selected (Hastie et al. 2009; Olofsson
et al. 2014; Stehman 2001). Such an approach avoids restricting the
predictor space for model training, which may occur when using
methods based on spatial independence constraints (Roberts et al.
2017).

We used a stratified random sampling approach based on the
net growth rate measured at each plot to partition the data into
training and validation data sets comprising two-thirds (120) and
one-third (60) of the observations, respectively. This approach lim-
its extrapolation when generating model predictions by ensuring
a similar range of growth rates in the two data sets (Olofsson
et al. 2014; Roberts et al. 2017). We then used ordinary least square
(OLS) regression to train the model on the training data set.
For each candidate model, assumptions were verified graphically,
through the Shapiro–Wilk normality test and Verbyla’s test for
heteroscedasticity (Shapiro and Wilk 1965; Verbyla 1993). We
used Moran’s I (Moran 1950) to test for spatial autocorrelation
in models residuals. We then assessed the accuracy of the best-
ranked model on the validation data set.

The presence of spatial dependence in the predictor space can
lead to an overestimation of model performance when using a
conventional validation approach (Roberts et al. 2017). We there-
fore conducted an additional model performance assessment
using k-fold spatial cross-validation. To conduct this step, we
first tested for spatial dependence in the predictor space, using
package BlockCV in the R programming environment (Valavi et al.
2018). We determined the range of spatial autocorrelation in
each of the three predictors included in the best-ranked model
identified after the model-selection process. The size of the spatial
blocks was set as the largest range of autocorrelation amongst
all predictors raster layers (i.e. TCW slope, 6000 m). We then
conducted a 5-fold spatial cross-validation repeated a hundred
times in order to compare model performance with the first
modelling process.

LiDAR-derived information on forest structure,
composition, and site characteristics
Wall-to-wall information on forest structural attributes and site
moisture was obtained from an aerial single-photon LiDAR (SPL)
acquisition conducted in 2018 that only encompassed the RMF.
Attributes derived from the SPL directly (at a 20-m resolution)
included height, canopy cover, and the rumple index (Queinnec
et al. 2022b). Height was the 95th percentile of SPL return heights,
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whereas canopy cover was the percentage of SPL returns above
2 m. The rumple index is the ratio of the canopy surface area on
the ground surface area and is indicative of the canopy structural
complexity (Kane et al. 2008). Area-based predictions of stem
density and quadratic mean DBH were also generated at a 20-
m spatial resolution using a network of temporary sample plots
measured in 2019 and the SPL data (Queinnec et al. 2022b). To
get a general indication of site moisture, the topographic wetness
index (TWI, Beven and Kirkby 1979), was calculated from the
2018 SPL DEM at a 1-m resolution and averaged over the 20-m
footprint of the other layers’ cells. Finally, information on species
composition was extracted from a species composition layer gen-
erated from the 2018 SPL data in combination with Sentinel-2
satellite imagery, indicating the dominant species in each 20-m
pixel (Queinnec et al. 2022a).

Analysis of growth trends
The developed net basal area growth rate model was then applied
over treed areas within the RMF management area. To delin-
eate the area of model application, we used the aforementioned
canopy cover and species composition layers to identify stands
with similar attributes. The limited availability of LiDAR data,
which was solely collected over the RMF, as well as the time gap
between LiDAR acquisition and the most recent plot measure-
ments, did not allow for the use of the LiDAR-derived attributes of
the training plots for defining the model application area. Instead,
we used the 20-m-resolution canopy cover layer derived from
the SPL data to mask non-forested pixels, as well as areas with
<50% canopy cover. A 50% canopy cover threshold was chosen to
focus on stands developing as closed canopy forests, which are
primarily targeted for forest management and harvest practices
and to ensure the exclusion of treed bogs, frequent in the study
area. We then used the species composition layer to remove areas
that were dominated by species other than black spruce or jack
pine. Stands that were harvested or severely disturbed between
1984 and 2021 were also excluded, using both information from
the Ontario Provincial Forest Resources Inventory layer (FRI, Bilyk
et al. 2021) and the stand-replacing disturbance history generated
using the composite-to-change (C2C) approach (Hermosilla et al.
2016). This resulted in the exclusion of four of the training plots
from the model application area, three of which were excluded
because a stand-replacing disturbance had occurred between the
time of the last measurement and the LiDAR acquisition.

Growth trends over the entire forest management unit
The model was applied to a 10-year moving window of BAP
composites, which corresponds to the median interval between
the field measurements of the plots included in the model devel-
opment. This resulted in a predicted growth rate for 26 consec-
utive 10-year windows. Predictions were averaged to obtain the
predicted growth rate over the entire study area from 1984 to
2018. We then examined the range and variability of the pre-
dicted growth rate over the study area and analyzed its evolution
through time. In an additional step, we investigated the predictor
values across the model application area to determine the level
of extrapolation by the model. To do so, we computed the 5th,
50th, and 95th percentile, as well as the minimum and maximum
value of each predictor for all of the 26 moving windows for which
growth predictions were generated.

Data from the PSPs located within the RMF was used to cor-
roborate the model predicted trends in net growth rate over the
study period. We identified 64 plots, measured at least three
times between 1992 and 2019, allowing the calculation of the

plot-level net annual basal area growth rate on a minimum of
two consecutive intervals for each plot. This criterion resulted in
a different sample of plots compared to the one used in model
development and validation, since plots that were measured only
twice had to be rejected. Only plots in which jack pine and
black spruce were the dominant species, and in which no stand
replacing disturbances occurred from 1984 to 2019 were selected.
The time span between the first and last field measurement
ranged from 8 to 18 years during which the plots were visited
either three or four times. For each interval between field visits,
the plot-level net annual basal area growth rate was calculated.
Then, for each plot, the change in net growth rate was calculated
as the difference in net growth rates between two consecutive
intervals. This step resulted in positive net growth rate change
values for plots in which the net growth rate increased over time,
and negative values when the net growth rate decreased in the
most recent interval. The growth rate change values were then
averaged at the plot level, before calculating the average growth
rate change for the 64 plots. The growth rate trends derived from
these data were then compared to the growth rate trends derived
from the model.

Growth trends in relation to forest structure and
composition
To examine differences in growth trends in relation to forest com-
position and structure, we grouped all pixels into a predetermined
number of eight structurally distinct forest type exemplars based
on the information from the SPL-derived forest attribute and
species composition layers, using a k-means clustering approach
(Hartigan et al. 1979). Instead of including all structural and com-
positional attributes in the clustering process, we first reduced the
dimensionality of the data set by applying a principal component
analysis (PCA), a well-established multivariate data reduction
technique that allows summarizing several inter-correlated vari-
ables into a smaller number of uncorrelated variables, referred
to as principal components (Abdi and Williams 2010). Using PCA
before applying k-means clustering is an effective approach that
has the advantage of minimizing the sensitivity of k-means clus-
tering to the initial positions of the cluster centres (Celik 2009;
Dash et al. 2010). The stem density, quadratic mean DBH (hereafter
referred to as DBH), height, canopy cover, and value of the rumple
index as well as the species dominance were all used for the
PCA. The first three principal components respectively explained
45.0%, 28.3%, and 17.7% of the variance. The k-means algorithm
was applied on the first three PCs since it captured a large
percentage (i.e. 91.0%) of the variance.

For each of the resulting forest type exemplars, we extracted a
10 × 50 m profile from the 2018 SPL point cloud and summarized
the average structural attributes to visualize differences between
forest types. Using the forest attribute layer, areas corresponding
to the average values (±5%) of the five structural attributes of
each forest-type exemplars were located. We extracted the LiDAR
point cloud over a 3 × 3, 20-m cells window at the locations that
matched most closely to the desired structural attributes. The
two-dimensional profile for each exemplar was then extracted
after ensuring the forest cover was homogeneous within the point
cloud. The evolution of the predicted growth through time was
then plotted by extracting, for all pixels in each forest-type exem-
plar, the model-predicted growth rate and associated standard
deviations for the 26 moving windows. Two descriptive statistics
were calculated from the predicted growth time series to facilitate
comparison between forest types: the average growth rate over
the study period and the evolution of the growth rate through
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Table 3. Ranking of the candidate models for the prediction of the net growth rate.

Model ID Model name AICc �i Mk Wti

10 TCW slope + initial TCW value + initial NBR value 13.25 0.00 1.00 1.00
11 NBR slope + initial TCW value + initial NBR value 28.69 15.45 0.00 0.00
8 TCW slope + initial NBR value + initial TCA value 55.28 42.03 0.00 0.00
6 TCW slope + initial NBR value 58.69 45.44 0.00 0.00
1 TCW slope 83.43 70.18 0.00 0.00
4 TCW slope + initial TCW value 84.46 71.21 0.00 0.00
9 NBR slope + initial NBR value + initial TCA value 86.26 73.02 0.00 0.00
5 NBR slope + initial NBR value 92.28 79.04 0.00 0.00
7 NBR slope + initial TCW value 106.27 93.03 0.00 0.00
2 NBR slope 110.25 97.00 0.00 0.00
12 Intercept only 123.38 110.13 0.00 0.00
3 NDVI slope 123.55 110.30 0.00 0.00

AICc is the Akaike information criterion, corrected for small sample sizes, with deltaAICc (�i), model likelihood (Mk), and AICc weight (Wti). The
best-performing model is indicated in bold characters.

time, hereafter referred to as the growth trend. The average
predicted growth was calculated from all the pixels included
in each exemplar and corresponds to the average of the pre-
dicted growth for all the 26 moving windows. Analysis of variance
and multiple comparisons with the Tukey honestly significant
difference (HSD) test were conducted to verify if the average
growth rate was significantly different amongst the forest-type
exemplars. The growth trend corresponds to the linear slope of
the predicted growth values calculated over the 26 consecutive
moving windows. The significance of the trend was assessed using
the t-test statistic and associated P-value of the OLS regression
model built from the average predicted growth rate time series
of each forest-type exemplar. The location of the eight forest-
type exemplars was then mapped to allow relating their unique
characteristics to the spatial variations in the predicted growth
over time. We then examined the average predicted growth and its
slope throughout the study period in relation to the unique struc-
tural characteristics associated with each exemplar, taking into
account the available knowledge on the structural development
of boreal stands in this region. To allow for better visualization
of the spatial distribution of the forest type exemplars within the
study area, we imposed a 500-m tessellation over the initial 20-m
cells in order to display the most frequently occurring structural
exemplar within each 500-m cell.

Results
Modelling of the net basal area growth rate
The best-performing model of net basal area growth rate, identi-
fied after the model-selection procedure conducted on the train-
ing data set (n = 120), included the slope of the TCW index and
the initial value of both the TCW and NBR indices as predictors
(Table 3). The slope of the TCW was the single predictor most
strongly correlated to the net growth rate. The first-ranked model
clearly stood out from the other candidates, with a model like-
lihood of 1 and a marked difference in AICc with the second-
ranked. The spatial autocorrelation in the model residuals was not
statistically significant (Moran’s I = 0.042, P-value = .12), therefore
we did not integrate a spatial autocorrelation structure in the OLS
model. The range of growth rates and predictor values was similar
between the training and validation data sets (Table 4).

The final model had an R2 = 0.61 (P < .01, RMSE = 0.23 m2ha−1

yr−1) with an R2 = 0.58 (P < .01, RMSE = 0.25 m2ha−1 yr−1) on
the validation data (n = 60, Fig. 2). The R2 and RMSE (0.61,

Figure 2. Actual vs predicted net growth rate (m2 ha−1 yr−1) of the PSPs
included in the validation data set.

25.20 m2ha−1 yr−1) obtained from the k-fold spatial cross-
validation were similar. The median overall predicted growth
rate for the PSPs included in the validation data set was
0.46 m2ha−1 yr−1 (standard deviation = 0.27 m2 ha−1 yr−1)
compared to 0.47 m2ha−1yr −1 (0.32 m2ha−1 yr−1) calculated from
the PSP data.

Figure 3 shows the effects of the predictors included in the
best-ranked model. An increase in the slope of the TCW led
to an increase in the predicted net growth rate. A lower initial
TCW value resulted in a higher predicted growth than for stands
with a higher TCW initial value. The opposite relationship can be
observed for NBR, for which a low initial value results in a lower
predicted growth. The greatest predicted net growth occurs for
pixels showing a highly positive TCW slope, a low initial TCW
value, and a high initial NBR value.

Analysis of growth trends
Growth rate from 1984 to 2018 over the entire study area
The application of the model over a total area of 185 939 ha
revealed temporal and spatial variability in the predicted
growth rates. Between 1984 and 2018, the median predicted net
growth rate was 0.76 m2ha−1 yr−1, with a standard deviation of
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Table 4. Values of the predictor and response variables from plots included in the training and validation data sets as well as across
the entire model application area, considering all 26 moving windows.

TCW slope Initial TCW value Initial NBR value Annual net growth rate
(m2 ha−1 yr−1)

Training plots
5th percentile −20.17 −688.31 0.54 −0.03
Median −1.97 −402.28 0.65 0.47
95th percentile 30.30 −263.85 0.73 1.19

Validation plots
5th percentile −19.08 −710.38 0.52 0.10
Median −1.83 −428.98 0.65 0.47
95th percentile 20.41 −244.29 0.74 1.06

Model application area
5th percentile −14.00 −766.72 0.56 0.23
Median 3.18 −406.25 0.67 0.70
95th percentile 31.10 −212.99 0.75 1.32

The annual net growth rates reported for training and validation plots are observed growth rates, whilst growth rates reported for the model application area
are predicted values.

Figure 3. Model predictions and unconditional 95% confidence intervals for the best-fit model parameters.

0.09 m2ha−1 yr−1. There was a considerable range in predictions
with a 5th percentile at 0.35 m2ha−1 yr−1 and a 95th percentile
at 1.31 m2ha−1 yr−1 (Figs 4a and 6a). This was greater than the
median net growth rate measured in the training and validation
PSPs (0.47 m2ha−1 yr−1. standard deviation = 0.38 m2ha−1 yr−1),
but within the range of the growth rates measured in the
PSPs, with minimum and maximum values of −0.39 and
1.90 m2ha−1 yr−1, respectively (Table 4). The median predicted
growth rates were highly variable across the study site, as shown
in Figure 6.

Decomposing the time series in 10-year moving windows
allowed for visualizing the evolution of the predicted growth
rate over time (Figs 4b and 6b). In most of the model application
area, predictions were made within the range of predictor values
extracted over the plots included in the training data set. The
range of predictor values across the entire model application
area are presented in Table 4. Since the growth rate statistics
presented in Table 4 are derived from predictions across all 26
moving windows, they differ from the values averaged for the
period 1984–2018.

Whilst the median net growth rate reached 0.92 m2ha−1 yr−1

for the 1984–93 period, it was considerably lower at the end of
the study period, with a median predicted net growth of only
0.61 m2ha−1 yr−1 for the 2009–18 period, the lowest observed of
all 26 moving windows. The highest median predicted growth
was in the 1985–94 period (0.93 m2ha−1 yr−1). Between 1984 and
2018, the predicted growth averaged across the entire study site
showed a significant negative linear trend (P = .017), decreasing
by an average of 0.007 m2ha−1 yr−1 from one moving window to
the next.

The net growth rate also tended to decrease over time in the
PSPs, with an average change of −0.048 m2ha−1 yr−1 (standard
deviation = 0.59 m2ha−1 yr−1) between consecutive measurement
intervals, although the growth rate increased over time in 41% of
the plots (Fig. 5). The median annual net growth rate observed in
PSPs measured at least three times between 1992 and 2019 was
0.43 m2ha−1 yr−1. This is slightly lower than the median growth
rate measured in the selection of PSPs used for model develop-
ment and validation (0.47 m2ha−1 yr−1), which also included plots
measured only twice during the study period, but excluded plots
that were located < 80 m away from roads, waterbodies, and stand
boundaries.

Growth trends in relation to forest structure and
composition
The eight forest-type exemplars identified after the cluster-
ing procedure were characterized by distinct structural and
compositional attributes, described in Fig. 7 and Table 5. These
attributes are representative of the various development stages
expected in boreal forests of this region (Oliver and Larson
1996). The average predicted growth rate calculated over the
entire study period was significantly different between all
exemplars (P < .001) and ranged from 0.60 to 0.90 m2ha−1 yr−1

(Table 6).
Exemplars 1, 2, and 4 were characterized by high mean growth

rates over the entire study period, but the most pronounced
and statistically significant negative growth trends amongst all
exemplars (Table 5). Exemplar 1, dominated by black spruce, was
the fastest growing and also the most common, accounting for
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Figure 4. (a) Distribution of the predicted growth rate (m2ha−1 yr−1) over the study area from 1984 to 2018 obtained by averaging the predictions
computed on 26 10-year moving windows. Vertical dotted line indicates the median. (b) Evolution of the average predicted growth from 1984 to 2018
for the 26 10-year moving windows. The shaded region indicates the standard deviation.

Figure 5. Distribution of the plot-averaged changes in net growth rate
(m2ha−1 yr−1) measured in the permanent sample plots located within
the RMF between 1992 and 2019. Dotted line indicates the average.

21.4% (39 715.6 ha) of the area included in the analysis. Con-
versely, Exemplar 4, dominated by jack pine, was the least spa-
tially extensive exemplar in the study area, accounting for only
9054.5 ha (4.9%). These two exemplars were characterized by
the highest stem density values and high canopy cover, but low
canopy complexity, as indicated by their low rumple index values.
Representative of stands dominated by black spruce, Exemplar 2
accounted for 13.0% (25 151.5 ha) of the study area. This exemplar
was characterized by very low height and DBH, average density
and canopy cover values, and the second-highest TWI value.
Accounting for almost 40% of the study area, Exemplars 1, 2, and
4 were mainly concentrated in the western and south-eastern
regions of the study area (Fig. 8). Their rapid growth at the begin-
ning of the study period is followed by a gradual decrease, which
is readily visible in Fig. 7.

Exemplars 3, 5, and 8 also showed significantly negative growth
trends throughout the study period, although less pronounced
than those of Exemplars 1, 2, and 4 (Table 5, Fig. 7). These exem-
plars had substantial differences in their mean growth rate during
the study period. Dominated by black spruce, Exemplars 3 and 5
accounted for 14.7% (27 280.4 ha) and 15.4% (28 679.4 ha) of the
area included in the study, respectively, and were relatively evenly
distributed within the study area (Fig. 8). They had average values
of stem density, DBH, height, and rumple index, but a relatively
high canopy cover, with Exemplar 3 being the one with the highest
values for all structural attributes amongst both. Exemplar 8 was
dominated by jack pine and occupied only 5.9% (11 003.5 ha) of
the study area and was mostly concentrated in the eastern part of
the study area (Fig. 8). Exemplar 8 had the lowest average growth
rate over the study period amongst all exemplars and had high
rumple index, height, and DBH values, but a low stem density
and canopy cover. The structural attributes of Exemplar 6 were
similar to that of Exemplar 8, but Exemplar 6 was dominated
by black spruce. Exemplar 6 occupied 11.2% (20 897.1 ha) of the
area included in the analysis, showed a higher predicted growth
than Exemplar 8 and did not show either a positive or negative
trend in growth over the study period. Finally, Exemplar 7 was
dominated by black spruce and accounted for 13.5% (25 157.0 ha)
of the study area. This exemplar had the second-lowest average
predicted growth, but did not show a significant trend in growth
between 1984 and 2018. Exemplar 7 was characterized by a low
stem density and the lowest canopy coverage, DBH, and height
values, but showed a high rumple index value. This exemplar was
concentrated on the northernmost part of the RMF (Fig. 8) making
it easily noticeable in Fig. 7, since it displayed a slow growth rate
throughout the entire 1984–2018 period.

Discussion
In this study, we demonstrate how Landsat time series can be
used to generate spatially explicit information on coniferous-
dominated boreal forest net growth rate (annual basal area incre-
ment) in the absence of stand-replacing disturbances. Further-
more, airborne LiDAR data were used to indicate how predictions
of growth rates are representative of differences in stand develop-
ment stages, species composition, and structural attributes.

The field-calibrated and validated model provides wall-to-wall
predictions of average annual net basal area growth rate over the
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Table 5. Average structural attributes, predicted growth rates, and slopes of the growth trend for the eight forest-type exemplars.

Forest-type
exemplar

Proportion of
the study
area (%)

Dominant
species

DBH (cm) Density
(stems · ha−1)

Height
(m)

Canopy
coverage
(%)

Rumple
index

TWI Mean predicted
growth rate
(m2 ha−1 yr−1)

Trend in
predicted
growth
rate

Median
FRI age
in 2018

1 21.4 Black spruce 13.9 (0.9) 1976 (197) 14.0 (1.7) 91.9 (4.4) 2.84 8.9 (4.3) 0.90 −0.011∗∗∗ 83
2 13.0 Black spruce 12.9 (0.9) 1393 (197) 11.7 (1.1) 76.6 (7.7) 2.99 10.4 (4.5) 0.83 −0.010∗∗∗ 88
3 14.7 Black spruce 17.6 (0.9) 1620 (168) 18.1 (1.4) 90.8 (4.4) 3.60 8.0 (3.9) 0.79 −0.005∗∗ 93
4 4.9 Jack pine 15.9 (1.8) 1886 (373) 16.9 (2.2) 84.8 (7.5) 2.69 8.2 (4.0) 0.75 −0.022∗∗∗ 63
5 15.4 Black spruce 14.9 (0.8) 1468 (236) 15.0 (1.1) 82.1 (5.4) 3.61 9.1 (4.3) 0.73 −0.006∗ 93
6 11.2 Black spruce 18.9 (1.2) 1126 (183) 18.7 (1.8) 77.5 (8.8) 4.55 9.0 (4.3) 0.67 −0.002 98
7 13.5 Black spruce 15.4 (1.2) 1062 (188) 14.4 (1.4) 65.4 (7.5) 3.90 10.5 (4.5) 0.66 −0.002 98
8 5.9 Jack pine 20.3 (1.8) 1160 (237) 21.3 (2.2) 78.6 (9.7) 4.52 7.5 (3.7) 0.60 −0.006∗∗ 93

Values in parentheses indicate standard deviation. Asterisks indicate the level of significance of the linear slope of the growth time series calculated over the
26 10-year moving windows (∗∗∗ 0.001, ∗∗ 0.01, ∗ 0.05).

past 36 years for undisturbed forests within a large forest manage-
ment unit, which is critical information for silvicultural decision-
making (Forrester 2019). The developed net growth rate predictive
model explained a substantial proportion of the variance in net
growth rates measured from field data (58%, Fig. 2).

Amongst the tested predictors, the Theil Sen slope of the
TCW is the best linked to net growth rate. The TCW is known
to be correlated to various forest structural attributes such as
average stand DBH, height, crown diameter, density, and basal
area, making it a reliable indicator of stand development stages
in closed canopy forests (Cohen et al. 1995; Cohen and Spies 1992;
Hansen et al. 2001). Landsat-derived TCW has been successfully
used to detect forest growth and decline (Czerwinski et al. 2014),
and to map forest structural attributes and aboveground biomass
(Bolton et al. 2020; Matasci et al. 2018; Zald et al. 2016). These
results confirm that spectral indices utilizing shortwave-infrared
reflectance are the most appropriate Landsat-derived vegetation
indices to monitor forest structural development through time.
The poor correlation of NDVI with net growth brings additional
evidence of the limited capacity of this index to capture processes
of forest growth and decline in high canopy cover forest (Fiore et al.
2020; Sulla-Menashe et al. 2018).

The initial condition of the forest was important in predicting
subsequent growth. The first-ranked model included the initial
value of both the TCW and the NBR. Indicative of earlier stages of
stand development, low initial TCW values are associated with
higher growth rates in the following period. This is consistent
with the typical evolution of growth rates in boreal forests, being
faster at early stages of development and gradually slowing down
once canopy closure is reached (Chen and Popadiouk 2002; Harper
et al. 2005). Interestingly, lower initial NBR values are linked to
subsequent slower growth. Low NBR values are associated with
a higher proportion of non-photosynthetically active vegetation
or more exposed soil when compared to areas with higher NBR
values (Asner 1998; Clevers 1988). In undisturbed forests, a low
initial NBR may therefore suggest a sparse, less productive site, or
stands that have previously experienced stress or mortality and
are more likely to grow slowly in the future.

Changes in growth rate over the study period
The application of the predictive model on 10-year moving win-
dows allowed for the visualization of the spatial and temporal
variability in growth rates within the study site between 1984 and
2018 (Figs 4b and 6b). Figure 6 highlights this variability; while
some areas of the RMF showed a sustained growth rate across
all moving windows, a gradual decline in the predicted growth

rate is observed in some regions. The generalized growth decline
revealed by model predictions during the investigated period
(Fig. 4b), corroborated by the decline in growth rates observed
in the permanent sample plots located within the study site
(Fig. 5) is mainly attributable to an age-related decrease in growth
rates. The analysis of growth trends was conducted exclusively
on stands that were established before 1984, creating a bias
due to the progressive reduction of the growth rate associated
with stand age (Chen et al. 2002). The high median growth rate
observed in the first 10-year moving window (i.e. 1984–93) is
related to the presence of young stands, regenerating consec-
utively to clear-cuts conducted from 1973 to 1983 on a total
area of 8876 ha. The median growth rate predicted over this
area went from 1.58 m2 ha−1 yr−1 in the 1984–93 period, to only
0.73 m2 ha−1 yr−1 in the 2009–18 period.

Fluctuations in the predicted growth rate within the study
period may, however, be attributable to other factors, such as
a growth response to environmental stressors. The predicted
growth rate showed a substantial decrease in 1988–97 that lasted
until the 1997–2006 period (Fig. 4b). In June, July, and August
2001, abnormally low amounts of precipitation accompanied by
higher than normal temperatures resulted in 110 306 ha of visible
drought damage in the Timmins District in Ontario, where our
study site is located (MNRF 2001). Examination of the values of
the standardized precipitation evapotranspiration index (SPEI,
Vicente-Serrano et al. 2010) during the study period also revealed
abnormally low values in 1997, 2005, and 2011, which could have
also impacted forest growth.

A widespread increase in mortality rates was observed in Cana-
dian boreal forests between 1963 and 2008. Jack pine and black
spruce, the most abundant species in our study area, both showed
a significant increase in mortality rates during this period (Peng
et al. 2011). The mortality rates of these species were significantly
and positively correlated to temperature, which increased con-
tinuously at our study site during the same period. Mean annual
temperatures over the RMF, modelled using BioSim (Version 11;
Régnière et al. 2017) followed a significantly increasing trend
(P = .01) between 1970 and 2018 with an average annual increase
of 0.02◦C. Marchand et al. (2019) also detected negative growth
trends in black spruce and jack pine tree rings at several locations
in the neighbouring province of Quebec between 1970 and 2005.
The most widespread explanation for these growth declines in
the boreal forest is related to an increase in temperatures that
would cause some boreal stands to shift from temperature- to
moisture-limited growth (Chagnon et al. 2022; D’Orangeville et al.
2018; Girardin et al. 2016b; Peng et al. 2011). Although small to
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10 | Alexandre Morin-Bernard et al.

Figure 6. (a) Predicted growth rate (m2ha−1 yr−1) over the study area from 1984 to 2018 obtained by averaging predictions computed on 26 10-year
moving windows. (b) Predicted growth rate (m2ha−1 yr−1) over the study area from 1984 to 2018 decomposed in 26 10-year moving windows.

moderate increases in temperature are expected to have positive
effects on the growth of boreal species, higher increases in
temperature that are not accompanied by higher amounts of
precipitation can have detrimental effects, especially in sites were

topography or a coarser deposit makes the water availability low
(Marchand et al. 2019). Soil water availability was found to be
significantly correlated to the growth of black spruce forests
in many regions, and is expected to become an increasingly
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Figure 7. Characteristics of the eight forest-type exemplars. The first column shows the main structural parameters, extracted from the forest
attributes layer generated using SPL data. The second column shows the normalized SPL profiles illustrating the typical forest structure associated
with each of the forest-type exemplars. Each profile has a width of 10 m and a length of 50 m. The third column shows the model-predicted growth of
each forest-type exemplar from 1984 to 2018, calculated over 26 10-year moving windows. The exemplars are presented in decreasing order of average
predicted growth during the study period. The number on the left indicated the cluster number used in the text.
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Figure 8. Location of the forest-type exemplars within the study site. For visualization, the 20-m pixels were aggregated into 500-m pixels showing the
dominant forest-type exemplar.

important driver of productivity in the boreal zone (Chagnon et al.
2022; Girardin et al. 2016b; Peng et al. 2011). On the drier sites, jack
pines would also be more likely to die prematurely, because of
the species’ small physiological margin of safety from hydraulic
failure during drought (Mamet et al. 2015). The vulnerability of
this species to pathogens has also been found to be higher on sites
with low available water-holding capacities, by influencing carbon
mobilization, allocation, and utilization for defence responses
(Hussain et al. 2020).

Growth trends in relation to forest structural
attributes and composition
The model-predicted growth of the identified forest-type exem-
plars is consistent with previous research on the structural devel-
opment of boreal stands in the same region (Harper et al. 2005;
Smirnova et al. 2008). The statistically significant decreasing slope
of the predicted growth for Exemplars 1, 2, and 4 suggest that
these stands are at an early stage of development. This is sup-
ported by the rumple index which is the lowest amongst all
exemplars, indicating relatively homogeneous canopy surfaces
and low structural complexity (Kane et al. 2010). The high stem
density and canopy cover of Exemplars 1 and 4 are typical of
the transition from the stand initiation stage to the stem exclu-
sion stage, where trees that established successfully and grew
rapidly in open conditions are now occupying most of the avail-
able growing space, reaching canopy closure (Harper et al. 2005;
Oliver and Larson 1996; Smirnova et al. 2008). The moment at
which trees start experiencing competition for light and other
resources occurs faster in jack pine dominated stands than in
black spruce dominated stands because of faster juvenile growth
rates (Harper et al. 2003). The jack pine-dominated Exemplar 4
indeed shows the highest predicted growth rate during the 1984–
93 period (1.17 m2 ha−1 yr−1), followed by the black spruce-
dominated Exemplar 1 (1.09 m2 ha−1 yr−1). Compared to the latter,

Exemplar 2, which was also dominated by black spruce, has a
lower density, canopy coverage and the lowest height, typical
of the stand initiation stage or to forests developing on low
productivity sites (Harper et al. 2005; Oliver and Larson 1996).
This exemplar had the second highest TWI value, indicative of
hydric conditions. Development of boreal stands on organic and
hydric sites occurs on a considerably longer timescale than on
mesic sites and do not necessarily follow the development stages
expected in managed boreal forests (Oliver and Larson 1996), since
they may never reach full canopy closure and experience self-
thinning due to competition (Harper et al. 2005). Although reliable
information on stand age was not available over the entire study
area, especially for older stands, data from the FRI on recent
silvicultural interventions reveal that 82.4% of the area harvested
from 1973 to 1983 (8876 ha) was classified either in Exemplars 1,
2, or 4, which is consistent with the observed patterns in model-
predicted growth.

The structural attributes and growth patterns of Exemplars 3
and 5 suggest they have reached the stem exclusion stage (Harper
et al. 2005; Oliver and Larson 1996). The progressive decrease
in growth rates associated with these exemplars, as indicated
by a significant decreasing trend in the predicted growth, was
less substantial than in the case of Exemplars 1, 2, and 4. Their
lower stem density values, but relatively high height, DBH, and
rumple index values are indicative of stands that entered the stem
exclusion stage, where trees start experiencing the consequences
of competition, leading to the mortality of trees with a less
favourable position in the canopy, associated with a progressive
reduction in stem density and growth at the stand level (Oliver
and Larson 1996). Differences in the predicted growth between
these two exemplars may be attributable to differences in age or
site productivity.

Exemplars 6, 7, and 8 have the lowest average predicted
growth rate over the study period, consistent with their structural
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attributes that are indicative of older stands. These exemplars
have the highest rumple index values, indicative of complex
canopy surfaces, high DBH values, and low stem density. The
low stem density of Exemplars 6 and 8 are likely due to a
pronounced self-thinning due to mortality from competition,
environmental, or age-related factors typical of the understory
reinitiation stage (Oliver and Larson 1996). Exemplar 7 is probably
representative of an alternative stand development trajectory;
with the highest TWI value, the lowest canopy coverage, and
the third-lowest height, it possesses the characteristics of old
black spruce stands located on hydric sites (Harper et al. 2005).
On these less productive sites, stands may never reach canopy
closure and are growing slowly, but continuously for a period
that can last until 200–250 years of age, whilst growth reaches a
peak and decreases considerably earlier on more productive sites
(Harper et al. 2003). This is supported by a lack of a significant
trend in the predicted growth of Exemplar 7 over the 26 moving
windows. Conversely, Exemplar 8 showed the lowest average
growth rate and a significant reduction in the predicted growth
rate throughout the study period. This exemplar, characterized
by the lowest TWI value, may be representative of the succession
pathway of stands with high jack pine component on coarse
deposits, where growth is sustained in the early development
stages, but decreases more rapidly than black spruce dominated
stands (Harper et al. 2005). Because of their shorter longevity (i.e.
70–100 years), jack pine trees will eventually disappear, leaving
space for the more shade tolerant black spruce and leading to an
eventual decrease in forest canopy coverage and height (Harper
et al. 2002; Smirnova et al. 2008).

Implications for the management of boreal
stands
The growth of boreal stands is influenced by numerous internal
and external factors, such as stand age, structural attributes,
and species composition, as well as site characteristics such as
topography and surface deposits. For instance, a decline in growth
rate is expected to occur earlier on productive sites dominated by
jack pine than on less productive sites dominated by black spruce
(Harper et al. 2003). Changes in the growth rate can also happen
in response to physiological stresses, caused notably by limited
water availability due to topography or the nature of surficial
deposits (Johnstone et al. 2010; Marchand et al. 2019).

The availability of high-resolution, spatially explicit informa-
tion on forest growth rates and the evolution of the growth rate
over time offer the possibility of applying more precise and agile
silviculture practices by discriminating actively growing stands
from those that are stagnating or declining at the scale of a
management unit. This information is crucial for efficient forest
management (Forrester 2019), but can be challenging to obtain
using traditional inventory approaches that provide only a partial
and intermittent picture of forest growth, since ground plots are
spatially and temporally constrained, i.e. limited in number and
measured only periodically (Bowman et al. 2013; Gillis et al. 2005).

By combining information on forest stand structure derived
from LiDAR data with growth information derived from Landsat
time series, targeted silvicultural interventions could be carried
out to stimulate the growth of stagnating stands, promote the
resistance and resilience of vulnerable stands, or determine the
best time for harvesting. Studying past growth rates and linking
those with stand structure could enable the development of
a library of representative growth curves for specific sites and
species, thereby improving yield predictions (Boisvenue and White
2019).

Limitations and future work
The approach developed in the current study is specifically
designed for monitoring of gradual changes in undisturbed
forests. A substantial proportion of boreal stands in Canada
however will likely experience some form of disturbances be
it from natural disturbances or silvicultural treatments. The
relationships between the effect of these events on stand-level
growth dynamics, structural attributes, and canopy spectral
reflectance are complex and highly variable depending on the
disturbance agent, making model-predicted growth rates more
complex in this context. To be broadly applicable to boreal
forests of Canada, the approach proposed in this study could be
integrated within a continuous inventory framework, in which
change detection algorithms are used to detect disturbances
and stand attributes are updated accordingly (e.g. Coops et al.
2023). Combining these approaches would enable spatial and
temporal delineation of the areas and periods for which model
predictions could be generated reliably. Other studies have used
similar approaches to exclude disturbed areas from productivity
assessments (Moan et al. 2023).

In the current study, growth rate predictions were generated
using constant length, 10-year moving windows, which corre-
sponds to the median interval between field measurements of
the plots used for model development and validation. However,
the interval between field measurements varied widely, ranging
from 5 to 24 years. Despite such a large range, we could not find
any patterns in the magnitude of errors in model predictions as
a function of the length of the time between field measurements.
Calculation of the predictions on shorter or longer intervals may,
however, have produced slightly different results. The optimal
window length should be investigated further and taken into
account in the future development and application of such mod-
els, since related studies have concluded to the importance of this
factor (Bolton et al. 2020).

It is likely that the drought events and the continual rise
in mean temperatures observed in the study area contributed
to changes in moisture regimes, which played a role in the
fluctuation of forest growth rates. The number of forest-type
exemplars presented in this study was determined arbitrarily and
do not likely encompass all of the variability in site conditions,
forest structure, composition, and associated growth patterns
within the study area. The clustering method employed focused
exclusively on undisturbed forests and resulted in a fixed number
of classes, which could have been expanded to capture more
variability in growth conditions. Each forest-type exemplar
represented between 9054 and 39 715 ha of forest land and did
not consider differences in site conditions or stand age, both of
which are important factors in growth response to environmental
conditions. Accounting for these factors could have revealed more
pronounced differences between forest types. As a result, the
diversity in observed growth patterns was limited, with many
exemplars showing trends that were similar to that of the entire
forest management unit. Additionally, most exemplars exhibited
large within-class variability in predicted growth rates, likely due
to differences in site conditions, as evidenced by the high standard
deviation of the TWI values within each exemplar. Nonetheless,
differences in the structural and compositional attributes of the
exemplars were sufficient to reveal dissimilarities in the average
predicted growth and growth trends throughout the study period.

Future research will focus on evaluating the model’s ability to
capture differences in predicted growth rates amongst sites with
varying levels of sensitivity to climate stressors using climate data
and field-collected soil and growth data. This capacity to retro-
spectively assess the spatial manifestations of climate stressors
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on forest growth may also help inform the development of climate
sensitive growth and yield models.

Conclusion
In the face of increasing uncertainty surrounding future growth
and forest condition under changing environmental conditions,
responsible and adapted forest management practices require the
development of methods that enable spatially explicit monitoring
of forest growth rates and their evolution over time. Our study
demonstrates that a field-calibrated and -validated model, devel-
oped using Landsat time series, can predict the annual net basal
area growth rate for undisturbed forests and reveal differences
in growth rates that are consistent with stand development stage
and species composition, as determined using airborne LiDAR and
Sentinel-2 data. Linking a forest stand’s structural attributes with
the evolution of growth over time has the potential to address
several current challenges in the forest management domain.
The proposed approach could eventually be used to create base-
line growth trajectories for various forest types on different site
conditions that could then be integrated into a near-real-time
forest inventory framework, allowing for the updating of forest
attribute layers in undisturbed forests. The information generated
by this approach can improve yield predictions, optimize rotation
lengths, and identify target areas where silvicultural interventions
aimed at maintaining or enhancing growth could be conducted.
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