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Abstract

Western North America has seen a recent dramatic increase in large and often

high-severity wildfires. After forest fire, understanding patterns of structural

recovery is important, as recovery patterns impact critical ecosystem services.

Continuous forest monitoring provided by satellite observations is particularly

beneficial to capture the pivotal post-fire period when forest recovery begins.

However, it is challenging to optimize optical satellite imagery to both interpo-

late current and extrapolate future forest structure and composition. We identi-

fied a need to understand how early spectral dynamics (5 years post-fire)

inform patterns of structural recovery after fire disturbance. To create these

structural patterns, we collected metrics of forest structure using high-density

Remotely Piloted Aircraft (RPAS) lidar (light detection and ranging). We

employed a space-for-time substitution in the highly fire-disturbed forests of

interior British Columbia. In this region, we collected RPAS lidar and corre-

sponding field plot data 5-, 8-, 11-,12-, and 16-years postfire to predict struc-

tural attributes relevant to management, including the percent bare ground, the

proportion of coniferous trees, stem density, and basal area. We compared for-

est structural attributes with unique early spectral responses, or trajectories,

derived from Landsat time series data 5 years after fire. A total of eight unique

spectral recovery trajectories were identified from spectral responses of seven

vegetation indices (NBR, NDMI, NDVI, TCA, TCB, TCG, and TCW) that

described five distinct patterns of structural recovery captured with RPAS lidar.

Two structural patterns covered more than 80% of the study area. Both pat-

terns had strong coniferous regrowth, but one had a higher basal area with

more bare ground and the other pattern had a high stem density, but a low

basal area and a higher deciduous proportion. Our approach highlights the

ability to use early spectral responses to capture unique spectral trajectories and

their associated distinct structural recovery patterns.

ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and

distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

1

https://orcid.org/0000-0003-0347-7165
https://orcid.org/0000-0003-0347-7165
https://orcid.org/0000-0003-0347-7165
https://orcid.org/0000-0003-4674-0373
https://orcid.org/0000-0003-4674-0373
https://orcid.org/0000-0003-4674-0373
mailto:sarahsmith.tripp@alumni.ubc.ca
https://github.com/sarahsmithtripp/TemporalStructuralRecovery.git
https://github.com/sarahsmithtripp/TemporalStructuralRecovery.git
https://app.globus.org/file-manager?destination_id=ca637dc6-5488-4c6e-b250-cafd693820ba&amp;destination_path=%2FDI&plus;-&plus;Quesnel%2FLiDAR%2F
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frse2.420&domain=pdf&date_stamp=2024-09-18


Introduction

Monitoring forest recovery in response to changing fire

regimes is a global challenge accentuated in western North

America, where a warmer climate has recently dramatically

increased wildfire occurrence (Parisien et al., 2023). Perva-

sive wildfires and subsequent recovery of forests in a

warmer climate may change forest structure by altering

stand density (Hoecker et al., 2023), shifting dominance of

coniferous tree species (Jorgensen et al., 2023), or even trig-

gering ecosystem transitions such as forest to grassland

(Hamilton & Burton, 2023). Such novel patterns of recov-

ery have already been observed in the boreal, where

increased fire frequency and intensity has led to increases in

postfire deciduous cover (Baltzer et al., 2021; Johnstone

et al., 2010). To characterize these possibly novel recovery

patterns, forest managers require spatially and temporally

continuous assessments of regeneration early in the recov-

ery period (first 5–10 years), as this early period defines

long-term forest structure (Seidl & Turner, 2022).

Observations from satellites, aerial imagery, and light

detection and ranging (lidar) allow postfire recovery

assessment across broad, compositionally diverse land-

scapes (White, 2024). Optical satellite imagery is espe-

cially applicable for recovery monitoring due to the

availability of a long and dense time series (Pasquarella

et al., 2016; White et al., 2020). Using satellite image

archives, such as those of Landsat, changes in spectral

reflectance over time can be associated with forest recov-

ery (Kennedy et al., 2012). Spectral trajectories are related

to, but are not a direct measure of forest structure (Chu

& Guo, 2014; Cohen et al., 2010; Kiel & Turner, 2022;

White et al., 2022). However, when fused with field or

other structural data, spectral reflectance can help charac-

terize structural attributes indicative of recovery (White

et al., 2023). Some key indicators for structural recovery

patterns (henceforth recovery patterns) include measures

of stand structure and composition such as stem density,

composition, basal area (BA), and biomass (Johnstone

et al., 2016). Prior work has linked spectral observations

to these structural attributes (Kemp et al., 2016; Kiel &

Turner, 2022; White et al., 2019, 2020). More recently,

White et al. (2023) used a North American boreal-wide

set of field data to show that areas of boreal forest with

faster spectral recovery were also more likely to have tran-

sitioned from a coniferous forest prefire to a deciduous

forest postfire, or were deciduous prefire. However,

research of distinct structural recovery patterns is often

retrospective, identifying novel patterns after stand estab-

lishment (Davis et al., 2023).

To address widespread calls to manage forests to main-

tain carbon storage (Clason et al., 2022; Metsaranta

et al., 2023), mitigate future fire risk (Hessburg

et al., 2021), and ensure future timber supplies (North

et al., 2019), new techniques are needed to identify spa-

tially variable recovery patterns within the time window

that defines the onset of forest recovery (henceforth,

recovery onset, which can be as short as 5 years; Frazier

et al., 2018). One approach to capture recovery onset is

to substitute space-for-time, using similar sites at different

stages of postfire recovery and projecting how a site at an

earlier stage may develop to a site at a later stage (Pick-

ett, 1989). Site similarities can be derived from optical

satellite imagery. For example, Ye et al. (2021) use Land-

sat data to show that distinct decreases in spectral reflec-

tance were linked to the likelihood and severity of future

insect disturbance. The same logic suggests that areas with

similar spectral responses at the onset of recovery may

also have similar patterns of structural recovery.

Linking spectral trajectories to temporal patterns of

structural recovery relies on field campaigns to gather mea-

sures of key recovery indicators. In postfire environments,

relying on field campaigns to relate to satellite-based spec-

tral observations requires personnel to work in remote and

potentially dangerous areas (Rakochy & Hawkins, 2006).

Further, resource demand for field sampling campaigns

increases when more samples are needed to capture diverse

spectral or structural responses of extensive burns in

diverse forest types (Bartels et al., 2016; Holsinger

et al., 2022). Thus, field sampling may be unrealistic to cap-

ture the diverse structural responses of increasingly

fire-prone North American forests. One resource to aug-

ment structural data gathered with intensive field methods

are data from remotely piloted aircrafts (RPAS), which can

come equipped with low-cost lidar systems (Coops

et al., 2021). RPAS-acquired lidar can extend assessment of

forest stand characteristics to remote and/or challenging

locations at low costs (Guimar~aes et al., 2020; Wulder

et al., 2013) while maintaining or even improving accurate

measures of the fine-scale vegetation characteristics that

define young and regenerating forests (Shrestha

et al., 2021). Using spatially continuous estimates of forest

structure from RPAS, measures of structural recovery can

be linked to distinct spectral trajectories (Smith-Tripp

et al., 2024). However, it remains to be investigated

whether distinct spectral trajectories identified early on

(i.e., 5 years after a disturbance) are indicative of later

structural recovery patterns.

In this study, we asked whether Landsat spectral trajecto-

ries identified 5 years after a wildfire event are indicative of

different patterns of structural forest recovery. Overall, this

study had two main objectives. First, we identified unique

spectral responses from Landsat metrics derived 5 years

after the fire event (within the recovery onset period). Sec-

ond, we grouped these spectral trajectories based on pat-

terns in structural recovery identified from a space-
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for-time substitution in forests 5–16 years after fire. Using

RPAS, we acquired structural measures prioritized by forest

managers, including stem counts, BA, composition, and

the proportion of bare ground. We used space-for-time

RPAS data to describe temporal patterns of recovery and

group spectral trajectories that behave with distinct pat-

terns. By grouping spectral trajectories, we aimed to inves-

tigate distinct patterns of structural recovery in burned

landscapes of the interior of British Columbia.

Materials and Methods

Study area

Our work focused on an area in central British Columbia,

Canada, which is representative of other ecosystems in

western North America. The area spans over 12 million

ha of sub-boreal spruce (SBS) and sub-boreal pine spruce

(SBPS) ecozones of interior British Columbia (Fig. 1).

The SBS and SBPS bio-geoclimatic ecozones (BEC) are

prone to large and high-severity wildfires with return

intervals greater than 100 years (Meidinger & Pojar, 1991).

These forests are dominated by lodgepole pine (Pinus con-

torta), interior spruce (Picea glauca), sub-alpine fir (Abies

lasiocarpa), and trembling aspen (Populous tremuloides),

which are similar to other dry continental forests in

North America and thus have broad applications to oper-

ationalizing methods to monitor structural forest recovery

(Klassen & Burton, 2015).

Fire-disturbed areas, including both year and severity,

were provided by the National Terrestrial Ecosystem

Monitoring System (Hermosilla et al., 2018). NTEMS

supplied fire severity as a measure of dNBR (difference in

the Normalized Burn Ratio – the ratio of red and the

short-wave spectral bands before and after disturbance).

To identify high-severity areas, we selected pixels where

dNBR values ranged from 1.5 standard deviations below

the mean to the maximum dNBR value for all pixels des-

ignated as high severity per the provincial classification

(BC Ministry of Forests, 2021). We also omitted areas

that had been replanted after the fire. Locations of

high-severity fire, where final spectral clustering was

applied, covered 657 000 hectares (5.4%) of the study

area from 1984 to 2018.

Data processing

Spectral metrics from Landsat satellite imagery

Landsat best-available pixel composites

The temporal spectral metrics used to develop the unique

spectral trajectories were created from time series of

Landsat observations. Time series of Landsat spectral

observations were derived from cloud-free image compos-

ites developed using a Best Available Pixel (White

et al., 2014) compositing approach. BAP images were

downloaded from Google Earth Engine for 1984–2022
(Francini, 2021). Selected pixels prioritized images closest

to August 1st (corresponding to the peak of the growing

season for Canadian forests) with minimal cloud cover

(White et al., 2014). We excluded pixels more than

30 days from August 1st or Landsat scenes that had more

than 70% cloud cover. We additionally applied a despik-

ing algorithm with a tolerance of 0.7, which uses sur-

rounding year values to fill pixels where the difference

from the prior year is large (>70% change) and also not

observed in later years (Hermosilla et al., 2024). We

selected this higher value (often set at 0.2 or lower) to

capture disturbances without marking them as noise

(Cohen et al., 2010).

Spectral trajectory variables

We derived Landsat indices known to differentiate forest

attributes (Frolking et al., 2009). Indices included the

Normalized Burn Ratio (NBR), Normalized Difference

Vegetation Index (NDVI), Normalized Difference Mois-

ture Index (NDMI), and the tasseled cap transformations

—greenness (TCG), wetness (TCW), brightness (TCB),

and angle (TCA). We calculated spectral metrics based on

a 5-year window after the fire disturbance. Using this

5-year window, three metrics that described variability in

postfire spectral response were calculated for each

fire-disturbed pixel. Spectral metrics included the magni-

tude of regrowth between the minimum postdisturbance

value and the value 5 years later (“regrowth magnitude”),

the median rate of change after the fire (theil-sen slope or

“slope”), and the index measure 5 years after the fire

(index +5 years; see Fig. 2). We also included the magni-

tude of the disturbance (“dist mag”) for a total of 22 var-

iables that described trajectories of the seven selected

spectral indices. To calculate spectral variables, pixels had

to have more than three postdisturbance cloud-free

images within 5 years after fire.

Space-for-time forest structure data with
RPAS lidar

To understand temporal patterns in structural recovery, we

built a space-for-time structural dataset of RPAS lidar data

collected in forests 5–16 years after forest fire. In total, we

acquired 1380 hectares of lidar data with an average point

density of 374 points/m2 (Fig. 1). We normalized the lidar

data by progressively filtering points to create a digital ele-

vation model that we subtracted from above-ground points

to normalize canopy height (Kl�ap�st�e et al., 2020). We
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computed standard metrics (Roussel et al., 2020) to use as

inputs for generalized linear models (GLMs) applied to

validation data from 26 field plots collected in the same

year of lidar acquisition. Final selected forest structural

predictions included: bare ground (%), basal area (BA, m2/

ha), the ratio of coniferous to deciduous (coniferous:

deciduous), and stem counts (stems/Landsat pixel). For

more details on data processing and structural model

development, see Smith-Tripp et al. (2024).

Methods

To understand the different patterns of forest recovery,

we combined unique satellite spectral trajectories with

distinct patterns of forest structure. Structural measures

from RPAS data captured multiple years postfire (5, 8,

12, and 16 years), in order to describe structural develop-

ment over time. Reflecting the study objectives, our meth-

odological approach was divided into two parts: (1)

unique spectral cluster development and (2) relation of

the spectral clusters with distinct structural patterns iden-

tified from the spatiotemporal structural data from RPAS.

For the first objective, we used K-means clustering to

identify unique spectral trajectories within high burn

severity areas. For the second objective, we related these

clusters of unique spectral trajectories with distinct forest

structural characteristics identified using space-for-time

sampling of the lidar data. We also describe the spatial

distribution of these distinct patterns of forest structure.

An overview of the workflow is described in Figure 2.

Figure 1. (Left) Location of BEC Zones included in the study (SBS: Sub-Boreal Spruce, SBPS: Sub-Boreal Pine Spruce). Areas covered in gray were

disturbed 1984–2022. Blue dots represent Lidar flight locations. The inset map shows the location of British Columbia and the study site (black

box) in Canada. The yellow star notes the location selected as an example for lidar data at right. (Right) Examples of the lidar variables include

proportion of bare ground, basal area, coniferous to deciduous ratio, and stem counts.
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Objective 1: identifying unique spectral clusters

Spectral clusters were generated using the 22 trajectory

variables (Fig. 2). Clustering used an augmented two-step

k-means++ clustering algorithm, where the k-means algo-

rithm uses informed seeds to select the (a) optimal cluster

number and (b) approximate cluster centroids (Kapoor &

Singhal, 2017). In this algorithm, initial cluster centers

were identified using the distortion criterion, which mini-

mizes the distance between observations and the associ-

ated cluster centroid (Kodinariya & Makwana, 2013).

Using initial centroids, we applied a fuzzy k-means clus-

tering to calculate the probability surface of each centroid

(Sanderson & Curtin, 2016). For points where cluster

likelihoods were less than 0.7, we ran additional clustering

to identify the ideal number and approximate location of

additional centroids. Centroids from both clusters seeded

the final clustering matrix. From the final clustering

matrix, we calculated the similarity of centroids, where

centroids with shared similarities, based on the distortion

criterion, were combined to produce clusters that together

describe unique spectral trajectories. We used a principal

component analysis (PCA) to explore underlying variabil-

ity in spectral variables used to cluster. PCA loadings

described the variability that resulted in final clustering.

To understand the temporal dynamics of spectral recov-

ery, we also investigated the measures of recovery com-

pared to predisturbance values for years 0–20. This

twenty-year time period was chosen to capture the

longer-term patterns of spectral recovery.

Objective 2: characterizing distinct patterns of
structural recovery

Distinct structural recovery patterns were created by com-

bining RPAS lidar data with spectral clusters. Specifically,

we combined spectral clusters where RPAS lidar sup-

ported similar structural patterns among sample years (5,

8, 11, 12, and 16 years). For example, two spectral clus-

ters would collapse if they had significantly different stem

counts but similar basal areas across sample years. To

determine structural similarities, we used a permutation

Figure 2. Description of landsat data processing, spectral clustering, and spatiotemporal analyses with RPAs lidar data.
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multivariate analysis of variance (PERMANOVA) and

posthoc pairwise comparison (Anderson, 2001). A PER-

MANOVA measures the significance of the distance

between groups in n-dimensional space, where n is equal

to the number of structural metrics (n = 4, the four mod-

eled structural attributes). Significant (P < 0.05) PERMA-

NOVA results supported structural differences among

spectral clusters. The PERMANOVA was built on a

Euclidean distance matrix of the four structural metrics.

We used the distance matrix to run a PERMANOVA with

999 permutations using the distance matrix of structural

measures with year treated as a factor (Anderson, 2001).

Posthoc comparisons, using a Wilks test for nonparamet-

ric data, then identified which clusters could be combined

based on structural similarities. We tested merged struc-

tural patterns for differences in estimates of specific struc-

tural measures, like BA, with a nested ANOVA. Nested

ANOVAs were fit using year as a factor; thus, compari-

sons were limited to the structural patterns that had

observations for all years. Final outputs of the PERMA-

NOVA and posthoc tests identified distinct structural

recovery patterns. For the ease of the reader, we gave

these patterns ecologically relevant names that describe

their structural patterns.

Software packages

Clustering of spectral metrics was performed in R (R Core

Team, 2023) using the ClusterR package (Mouselimis, 2023)

for clustering, the fpc package (Cohen et al., 2003) to assess

cluster similarity, and the factoextra to calculate PCA load-

ings (Kassambara & Mundt, 2016). Later, distinct struc-

tural types were calculated in R (R Core Team) using the

vegan package (Oksanen et al., 2022) with posthoc tests

run using the RVAideMemoire package (Herve, 2023).

Posthoc tests of a nested ANOVA used the rstatix package

(Kassambara & Mundt, 2016).

Results

Objective 1: unique spectral clusters

Spectral cluster prevalence

K-means clustering and combination of similar clusters

resulted in 8 unique spectral clusters that explained 52%

of the variance in spectral metrics. Dominant determi-

nants of variance in clustering were the trajectory metrics

for TCA and NBR (loading magnitudes for NBR

regrowth = 0.25 and NBR slope = 0.27,Fig. 3B). Cluster 5

had the greatest average distance from other cluster cen-

ters (0.91), while cluster 3 had the smallest distance to

other clusters (0.84; Fig. 3). Cluster 1 was the most fre-

quently observed cluster (37% of the landscape), followed

by cluster 3 (16% of the landscape). Cluster 2 was the

least frequently observed (1% of the landscape).

Spectral trajectories of clusters

Postfire clusters were derived from spectral metrics at

5 years, but clusters showed variability in spectral recovery

throughout the early recovery time period (+20 years,

Fig. 4). Across all clusters, indices dropped immediately

postfire and slowly recovered, with many clusters recovering

to prefire values within 20 years. Conversely, TCB increased

for most clusters after fire. Of the indices that decreased,

TCG was the first to recover to predisturbance values.

Overall rates of recovery differed among clusters and

indices. Of the clusters, cluster 3 had the highest average

recovery for the first 5 years after fire for all indices

except NDMI and TCA. Cluster 5 had the lowest slopes

for all indices except NDMI and TCA (Figure S3). For

cluster 6, the onset of recovery generally occurred later

(Fig. 4) compared to the other clusters. This pattern is

most apparent in NBR, NDMI, and TCA.

Objective 2: characterizing distinct patterns
of structural recovery

Structural data for each spectral cluster

RPAS lidar data covered 722 ha of spectrally clustered area

(0.12% of area included in spectral clustering). The greatest

overlap with space-for-time lidar samples was in areas

5 years postfire (40.1%), coinciding with areas that burned

in 2017 (Fig. 5). Areas 8- and 16-years postfire were the

second and third most commonly captured (23.2% and

21.3%, respectively). Of spectral clusters, cluster 1 had the

largest area with RPAS structural data (304 ha). Cluster 2

had a very low proportion of area covered (~1 ha or 25

pixels). Our results focus on clusters where the number of

structural samples within and across years was consistent

(i.e., 1, 3, 5, 7, and 8). In clusters where the number of

structural samples was low within and across years, we

treat differences in structural estimates with caution.

Spectral clusters demonstrate forest succession
with distinct trends

Patterns of structural development were variable among

the different structural metrics we investigated. Results of a

pairwise PERMANOVA supported differences in structural

metrics over time among clusters (F(7, 7882) = 173.91,

P < 0.001, Table S3). Using a posthoc Wilks’ test, we found

spectral clusters 3, 4, 5, and 8 had similar structural pat-

terns both within and across years (P > 0.05, Figure S3).

Therefore, these clusters were combined under one
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structural label. For simplicity, we assign ecologically rele-

vant names to structural patterns based on observed struc-

tural dynamics in response data. These were:

• Emergent conifer: representing cluster 1. This pattern

showed a strong deciduous response (71% deciduous in

year 5) in early years that was replaced by relatively

large coniferous stems (BA 0.47 m2/ha in year 12 and

BA 0.82 m2/ha in year 16)

• Mixed forest regrowth: representing clusters 3, 4, 5

and 8. In this group, a high number relatively small

coniferous stems (553 stems/ha in year 12 and

866 stems/ha in year 16) were accompanied by a mix

of woody deciduous shrubs (10% deciduous cover in

year 16).

• Residual canopy to late growth: representing cluster 2.

This class had a live canopy after the fire that senesced

within the first 8 years (BA 2.14 in year 5 and BA 0.27

in year 8)

• Stem exclusion to stem loss: representing cluster 6. In

this pattern, a high number of coniferous stems in

years 8 and 12 was not observed in year 16 (820 stems/

ha in year 12 and 384 stems/ha in year 16).

• Dense mixed cover: representing cluster 7. Generally,

this pattern had high ground cover of both deciduous

and coniferous (coniferous: deciduous ratio 0.89 in year

12) while the proportion of coniferous stems was tem-

porally variable. Similar to the pattern above, this pat-

tern also had a large number of stems in year 12.

Figure 3. (A) Principal component analysis of trajectory variables used in clustering. Points represent a sample of the total dataset (10 000

random samples weighted by cluster frequency). Ellipses define where 40% of the data for each cluster are included. Black-labeled arrows are

the variable loadings of the PCA. Colors denote associated spectral cluster. (B) Variable loadings in order of importance. Values are scaled relative

to the importance of each principal component.
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Figure 4. Mean trajectories for each spectral cluster for all indices for years �3 to +20 after fire. Mean values are relative to a 3-year

pre-disturbance baseline period for all clusters. Label above panel notes respected index. The black dotted line at year = 0 is the fire year.
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For the five named groups, we compare their temporal

patterns of structural recovery for every sample year

(Fig. 6). Of the structural patterns, emergent conifer and

mixed forest regrowth were the only patterns that did not

have years with missing data. Emergent conifers had the

highest BA 16 years after the fire (0.82 � 0.002 m2/ha

(standard error), Table S4). Comparatively, the residual

canopy to late growth class had the lowest BA

(0.42 � 0.15 m2/ha). Stem counts showed an inverse pat-

tern between these two groups: 16 years after fire,

low-density areas had the lowest stem count estimates

(520 � 2 stems/900 m2), and the residual canopy group

had the highest stem count estimates (841 � 128 stems/

900 m2; Figure 6). However, the number of observations

for the residual canopy group in year 16 was low (n = 4).

Of the spectral groupings with more data in year 16, stem

exclusion to stem loss had the highest stem count esti-

mates (652 � 1 stems/900 m2, n = 384). Yet, the high

density of stems in this group was a decrease from obser-

vations at 12 years after fire, where, for the same group,

stem count estimates were 820 (�10) stems/900 m2.

Spatial distributions of distinct structural patterns

Over 80% of the study area was covered by mixed forest

(45.5%) and emergent conifer (36.9%). The skewed dis-

tribution of structural patterns is highlighted in Figure 7,

which shows the dominant structural group averaged over

10,000 ha hexagons. The least common pattern was resid-

ual canopy to late growth (1.18%). In most areas, all dis-

tinct structural patterns were observed (5 distinct

observations per hexagon). Emergent conifers or mixed

forest regrowth groups were generally the dominant struc-

tural pattern, but dense mixed cover was more common

in the southern part of the landscape.

We highlighted the differences in structural develop-

ment for the two most common patterns, emergent coni-

fer and mixed forest, which both had consistent structural

measures within and across years (Fig. 4). We directly

compared the structural estimates of emergent conifer

and mixed forests, as well as how these structural esti-

mates varied compared to the overall distribution of the

structural data for a given year. Areas identified as emer-

gent conifer had significantly different estimates of forest

structure compared to areas identified as mixed forest

regrowth (Table S5). For emergent conifers, early years

(5–12 years) were generally more deciduous and had a

lower proportion of bare ground compared to mixed for-

est areas. From year 5 through 16, emergent conifers

trended less deciduous than other regions (Fig. 6). By

year 16, mixed regrowth had a higher proportion of

deciduous and less bare ground than the emergent conifer

class. In year 16, the mixed regrowth class had the highest

ratio of deciduous cover (~1 m2 deciduous for every

10 m2 of coniferous cover), while the emergent conifer

had half as many deciduous (Fig. 8). For most years,

emergent conifers also had higher BA estimates compared

to mixed forest regions (Fig. 8).

Discussion

Larger and more severe wildfires across much of western

North America underscore the need for efficient monitor-

ing, capable of capturing the development of possibly

Figure 5. Number of pixels for each spectral cluster with associated RPA lidar data. The total value for each cluster is noted in the column.

Colors denote the proportion of pixels by fire year for each cluster.
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novel forest structures. Our work builds on prior Landsat

studies investigating early spectral responses (Pickell

et al., 2016), linking these unique responses to different

patterns of recovering forest structure and composition,

which will likely persist in future forests (Johnstone

et al., 2010). Using Landsat time series, we show it is pos-

sible to identify unique spectral responses and group

them by longer-term patterns of structural recovery. Our

spectral clustering approach used multiple spectral indices

to characterize unique spectral trajectories early on after

wildfire. We relate these spectral trajectories to forest

structure measures, collected via RPAS lidar, from sites at

different stages of structural recovery postfire. Overall,

sites at different postfire stages showed typical patterns of

early structural forest development, including stand initia-

tion and stem exclusion (Bartels et al., 2016; Oliver &

Larson, 1996). However, patterns of structural develop-

ment varied across spectral clusters.

Figure 6. The difference between the mean for each spectral pattern and the mean for each year since fire (5, 8, 11, 12, and 16 years). The

horizontal black line is the mean for that year. For bare ground percentage, values above the line have more bare ground. For coniferous:

deciduous, points above the line have a higher proportion of coniferous cover. For both BA and stem counts, values above the black line are

greater than the mean for the year. Groups with fewer than 3 observations are omitted from the graph.
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Our study highlights two patterns of structural recovery

which dominated the majority of the postfire landscape.

Patterns included: (1) mixed forest, where the bare

ground was gradually infilled with a mix of deciduous

and coniferous stems, and (2) emergent conifer, associ-

ated with a rapid deciduous response followed by

ingrowth of coniferous stems. A minority (20%) of the

landscape was covered by other distinctive patterns,

including areas with remaining live canopy (residual can-

opy to late stem growth), strong stem exclusion (stem

exclusion to stem loss), or covered by mixed herbaceous

and coniferous vegetation (dense mixed cover). For less

common patterns, capturing temporal structural growth

with space-for-time sampling was difficult.

Figure 7. (Top) Most common structural groups represented in 10 000 ha hexagons. (Bottom-left) number of distinct structural patterns in each

hexagon. (bottom-right) proportion of the hexagon covered by high-severity wildfire. The background for all maps is a hill shade.
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Figure 8. (A) Estimates for each structural measure for years after fire. All data (gray) are estimates across all groups. Emergent conifer (red) and

mixed forest growth (orange) are subsets for visualization. Asterisks indicate when ANOVA and posthoc Dunn test identify significant (<0.05)

differences among the emergent conifer and mixed forest groups (B) Exemplar lidar cross-sections for emergent conifer and mixed forest

regrowth groups.
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Multiple spectral indices help differentiate
unique spectral dynamics

Multiple indices in spectral clustering were necessary to

delineate unique spectral responses. NBR and TCA cap-

tured the most variability of spectral responses. We

expected NBR and TCA to be influential as these indices

capture soil reflectance and vegetation growth in young

and dynamic forest types (Cohen et al., 2020; G�omez

et al., 2014). Similar to prior research, we found that

TCB was the least informative index for clustering

(Smith-Tripp et al., 2024). The importance of TCB is

likely minimal, 1-18 as TCB saturates rapidly after a dis-

turbance due to ingrowth of deciduous vegetation (Bolton

et al., 2018). In our research, NDMI was not informative

for cluster development. In general, the use of NDMI for

monitoring forests is variable in the literature. Some sug-

gest NDMI is a preferred index (Fornacca et al., 2018;

Ochtyra et al., 2020), while others have shown it to be a

poor indicator of structure (Cohen et al., 2020; Storey

et al., 2016).

The value of multiple spectral indices for structural

assessment was further highlighted when clusters were

associated with distinct structural groups. Despite the

unique spectral responses of clusters 3, 4, 5, and 8, these

clusters merged into a single common pattern of mixed

forest recovery. Among these spectral clusters, cluster 3

had the highest NBR recovery rate and cluster 5 had the

lowest, but other spectral responses were similar, such as

the relatively low values of TCW growth. TCW reflectance

has a greater sensitivity to stand structure, such as BA;

therefore, low values in years 8–16 for this class could be

indicative of lower BA growth compared to the emergent

conifers group (Viana-Soto et al., 2020).

Dominant patterns of structural recovery
vary in time and space

Different environmental attributes, such as soil moisture,

may explain the variable distribution of structural recov-

ery observed across our study region (White et al., 2019).

In the study area’s drier southwest region, mixed forest

regrowth and dense mixed cover were more common

than the structural pattern of emergent conifers. Precipi-

tation is widely acknowledged to impact coniferous stem

growth (Bright et al., 2019; White et al., 2023; Young

et al., 2019); thus, the increased frequency of structural

patterns with low coniferous values in the southern

regions may be associated with drier conditions. Further,

spectral indices themselves probably captured some envi-

ronmental differences in southern regions. For example,

the stem growth to stem loss class was also common in

drier southern areas and had particularly low TCW values

(a measure of landscape wetness; Pontone et al., 2024).

Differences in precipitation, site aridity, and productivity

may also explain the increased heterogeneity in the num-

ber of represented structural patterns when a high pro-

portion of the landscape is covered in high-severity fire.

Increased representation of structural response patterns

may be linked with better representation of site-level dif-

ferences (e.g., site aridity), which can impact patterns of

structural development (Hamilton & Burton, 2023;

Talucci et al., 2019). Investigating environmental controls

on structural recovery is outside the scope of the current

investigation but is possible using our methodology.

Early spectral dynamics linked with
incipient recovery as a tool for land
management

Early spectral recovery was indicative of longer-term dif-

ferences in forest structural development. For example,

emergent conifer areas had the highest TCG regrowth of

the first 5 years, which was likely influenced by their

rapid deciduous ingrowth. The importance of TCG in

capturing this deciduous growth has been shown in previ-

ous postdisturbance studies (Pickell et al., 2016). Early

spectral reflectance also captured the senescence of live

canopy in the residual canopy group between years 5 and

8. The residual canopy group had the lowest TCB

regrowth values, indicating a steady increase in duff and

litter as the live canopy fell to the ground (Banskota

et al., 2014).

By combining Landsat time series with RPAS lidar

data, we found that distinct early spectral responses were

associated with different temporal patterns of structural

recovery, including patterns of deciduous growth and

stand density. These patterns of structural recovery varied

spatially, suggesting that environmental conditions may

influence structural development across our study area.

Our research supports that there is generally a low risk of

coniferous establishment failure in the SBS and SPBS

(Clason et al., 2022), but many regions also have a strong

proportion of deciduous stems. Although increasing

deciduous cover may be undesirable for timber-based

management objectives, it may be advantageous for

increased resilience to warming climates (Morin

et al., 2018) and decreased fire risk (Prichard et al., 2021).

In areas with numerous residual live trees, canopy senes-

cence can contribute to deadwood fuel buildup, which

increases future fire risk (Prichard et al., 2021), but the

remaining canopy can increase the diversity of regenerat-

ing tree species (Clason et al., 2022; Meddens et al., 2018)

and provide numerous other non-timber values. Balan-

cing the risk associated with postfire fuel build-up, with

benefits of increased diversity requires nuanced knowledge
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of site dynamics; while our approach does not capture

these site dynamics directly, our methodology effectively

identifies priority areas for further investigation and more

intensive management (Pettorelli et al., 2018).

Conclusion

Our research leverages the legacy of Landsat alongside the

expanding availability of RPAS lidar data to identify pat-

terns of structural recovery. British Columbia’s increas-

ingly disturbed area requires monitoring that projects

expected shifts in forest structure early on after fire events

(Crausbay et al., 2022). By quantifying the relationships

between early postdisturbance spectral responses and for-

est structural attributes at a critical recovery juncture, the

methodology presented herein allows forest managers to

make strategic decisions that capitalize on shifts in cli-

mate and species ranges (Hessburg et al., 2021; Pettorelli

et al., 2018).
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Table S1. Metrics of linear modeling from field plots and

RPAS lidar metrics. As linear models included field data

that was zero-skewed (BA and stem counts) or propor-

tional we applied different model families, which are

noted in the table. For a complete description of ABA

modeling see Smith-Tripp et al. (2024).

Figure S1. Model graphs comparing field measurements

(measured) to model predictions (predicted) built from

RPAS lidar. The black line shows the 1:1 line.

Figure S2. Average values of each spectral metric input in

Kmeans ++ clustering for the eight identified spectral

trajectories.

Table S2. Results of MANOVA applied to unique spectral

clusters to identify structural patterns of recovery.

Permutations = 999

Figure S3. Post-hoc significance values for analysis of dis-

similarities for each cross comparison of clusters. Colors

rank similar spectral clusters. We collapsed clusters were

post hoc p-values > 0.1.

Table S3. Average structural estimate for each structural

group for each year after wildfire (� standard error of
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the mean). The number of observations is the number of

30 9 30 m pixels with RPAS lidar data.

Table S4. Post-hoc dunn-tests for nested anova compar-

ing emergent conifer and mixed forest structural patterns.

We highlight these groups as they have data across all

years. P values are adjusted via the holm method. Years

were the structural estimates for each group are different

are starred.
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