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Forestry inventory update is a critical component of sustainable forest management, requiring both the spatially
explicit identification of forest cover change and integration of sampled or modelled components like growth
and regeneration. Contemporary inventory data demands are shifting, with an increased focus on accurate
attribute estimation via the integration of advanced remote sensing data such as airborne laser scanning (ALS).
Key challenges remain, however, on how to maintain and update these next-generation inventories as they
age. Of particular interest is the identification of remotely sensed data that can be applied cost effectively,
as well as establishing frameworks to integrate these data to update information on forest condition, predict
future growth and yield, and integrate information that can guide forest management or silvicultural decisions
such as thinning and harvesting prescriptions. The purpose of this article is to develop a conceptual framework
for forestry inventory update, which is also known as the establishment of a ‘living inventory’. The proposed
framework contains the critical components of an inventory update including inventory and growth monitoring,
change detection and error propagation. In the framework, we build on existing applications of ALS-derived
enhanced inventories and integrate them with data from satellite constellations of free and open, analysis-
ready moderate spatial resolution imagery. Based on a review of the current literature, our approach fits
trajectories to chronosequences of pixel-level spectral index values to detect change. When stand-replacing
change is detected, corresponding values of cell-level inventory attributes are reset and re-established based
on an assigned growth curve. In the case of non–stand-replacing disturbances, cell estimates are modified based
on predictive models developed between the degree of observed spectral change and relative changes in the
inventory attributes. We propose that additional fine-scale data can be collected over the disturbed area, from
sources such as CubeSats or remotely piloted airborne systems, and attributes updated based on these data
sources. Cells not identified as undergoing change are assumed unchanged with cell-level growth curves used
to increment inventory attributes. We conclude by discussing the impact of error propagation on the prediction
of forest inventory attributes through the proposed near real-time framework, computing needs and integration
of other available remote sensing data.

Introduction
The need for forest inventory updates
Forests are a dynamic ecosystem and resource, requiring
managerial focus at multiple scales to effectively balance
environmental and socio-economic sustainability. The devel-
opment and maintenance of forest inventories is vital to
sustainably manage current forest resources, as well as project
their state into the future (Gillis and Leckie, 1996; Kangas and
Maltamo, 2006; Tompalski et al., 2021a). As a result, forest
inventories have a requirement for accurate, precise and spatially
explicit information on the current state of forest resources

(Kangas and Maltamo, 2006). In addition to remaining current
and useful for management, forest inventory frameworks must
undergo systematic and periodic updates to track changes in
the forest resource, with respect to both management processes
such as silvicultural treatment and harvesting and the impact of
non-anthropogenic factors such as infestations, drought and fire.

In many countries, conventional forest inventory practice
involves the combination of field measurements and aerial
imagery (Leckie and Gillis, 1995). Following acquisition, images
are processed to generate polygonal layers representing stands,
within which attributes such as height or species composition
are estimated. Ground sample measurements of tree or stand
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heights, species, volume, diameter at breast height (DBH) and
stem density are then linked to the interpreted polygons to model
other attributes of interest (Thompson et al., 2007). This forms
the foundation of the initial (baseline) inventory. Forest attribute
modelling over large areas enables understanding of the status
of forest resources, providing information to drive silvicultural
planning and improve stewardship practices for forest managers.
Forests are, however, dynamic ecosystems and require routine
data acquisition efforts for attribute estimates to remain timely,
relevant and reliable. To address this, inventory frameworks must
proactively address how, when and where updates will occur to
maintain utility and data integrity.

Gillis and Leckie (1996) define inventory update as ‘the pro-
cess of detecting, collecting and adding changes to an inven-
tory resulting from disturbances causing depletions (harvesting,
fire, insect defoliation etc.), as well as changes to the forest
causing accretions (growth, silviculture)’. The authors define two
categories of data sources that can be used to update forest
inventory: (1) changes that can be observed or mapped in a
spatially explicit way such as harvest or fire and (2) changes that
need to be sampled or modelled, like regeneration or growth.

Strategic inventories for example are designed to inform long-
term forest management polices to characterize forest resources
at the broadest spatial and temporal scale (White et al., 2016).
As a result, broader spatial resolution and freely available data
may be the most appropriate. Provision of wood supply is often
the focus of inventories at the operational scale (Bourgeois et al.,
2018), and such inventories thus require a combination of accu-
rate tree attribute predictions at local to regional scales. Finally,
operational inventories provide guidelines to allocate manage-
ment activities to specific areas (Gautam et al., 2017) and thus
fine spatial detail and high precision in predicting forest attributes
are required.

Though strategies vary by jurisdiction, agencies often plan
updates for inventory frameworks at regular intervals (e.g. every
10 years) to reflect changes from harvesting, natural disturbance,
regeneration and growth. Depending on location and accessibil-
ity, inventory updates can be an onerous and expensive task. For
example, difficult-to-access, remote forested areas still require
ground sampling efforts for inventory estimates to remain as
accurate as possible. These efforts in remote locations can incur
high costs, often as high as several thousands of dollars to mea-
sure a single sample plot (Wulder et al., 2012b). To address these
challenges, updates to inventory are often an ongoing process
where operational areas are subdivided and specific areas are
undertaken based on the necessity of data, and are updated
incrementally.

Enhanced forest inventories
Conventionally, forest inventories are developed using a com-
bination of field plots and interpretation of aerial imagery as
a means to extend measurements over space (McRoberts and
Tomppo, 2007; Tomppo et al., 2010). Despite the importance
of aerial imagery for forest inventory needs, increasing chal-
lenges associated with deriving inventory information is becom-
ing evident. First, trained soft-copy photo-interpretation has been
commonly used to delineate stand boundaries and estimate
species compositions; however, this process is labour intensive

and costly, with a shortage of skilled interpreters becoming a
reality (Goodbody et al., 2019; Holopainen et al., 2015). Sec-
ond, inventory data demands are changing. Forest manage-
ment is increasingly focusing on a broader range of ecological
goods and services, with many attributes now requiring lev-
els of detail that are not easily derived from previously utilized
data sources (Goodbody et al., 2021). For example, attributes on
below-canopy forest structure are challenging to derive although
analytical innovations are developing (Jarron et al., 2020). Photo-
interpretation is also largely limited to describing attributes at
the stand level while operational-scale inventories may require
information describing within-stand variation (e.g. Guay-Picard
et al., 2015), or even individual tree attributes at a finer spatial
resolution (e.g. Moreau et al., 2020). Furthermore, the accuracy
of photo-interpreted attributes vary depending on the interpreter
(Tompalski et al., 2021b), with a low probability of having a
completely correct stand description (Leckie and Gillis, 1995).

Enhanced forest inventories (EFIs) have been proposed as tac-
tical and operational forest inventory frameworks (White et al.,
2016). EFIs are generated by integrating advanced remote sens-
ing data such as airborne laser scanning (ALS) with ground sam-
ple data to develop predictive models of key forest attributes
including height, basal area and volume (White et al., 2013).
An immediate benefit of EFIs is that they include data—like
ALS—that characterize the three-dimensional (3D) structure and
variability of forest resources. These structural data are spatially
explicit, providing summaries of best available estimates of forest
height, cover and variability at the cell level (Goodbody et al.,
2019). Unlike conventional polygonal inventories, EFI products
are wall-to-wall raster layers of structural metrics, which can
be directly included in modelling frameworks to provide high–
spatial-resolution estimates of forest attributes (Tompalski et al.,
2019). The value of data at the cell level cannot be overstated.
Whereas conventional stand-level polygonal inventories provide
single estimates of inventory attributes, EFI data provide fine-
scale (i.e. 20- or 30-m cell size or 0.1 ha) estimates and variability
within polygonal boundaries. Variation at the cell level provides a
means to segment forested landscapes objectively using struc-
tural data.

A limitation of EFIs is that large costs are often associated with
ALS data acquisition, processing, and inventory development.
EFIs are anticipated to be performed at least every 10 years
as a result of data shelf-life (McRoberts et al., 2018), similar
to conventional inventory frameworks. This decadal time step
leaves the opportunity for routine and frequent updating of the
inventory between these significant EFI updates. Developments
in near real-time inventory frameworks are needed to fill the gap
between improving the information on yield and decreasing the
lag since forest activities or disturbances. Avenues to integrate
updates into inventory systems multiple times a year would likely
improve spatial and empirical understandings of stand growth
and development patterns, allow for more rapid and effective
response to disturbance events, promote appropriate and tai-
lored silvicultural prescriptions, develop refined economic projec-
tions of timber- and nontimber-values, improve understanding
of socio-economic reliance on forest ecosystems and, ultimately,
aid in formulating effective evidence-based forest policy. Studies
have shown that the timeliness and accuracy of scheduled inven-
tory updating can have a significant impact on management
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activities and affect the long-term future projections of forest and
timber attributes. For example, McRoberts et al. (2018) found that
regular updates to inventories helped reduce long-term inventory
costs, as well as maintain the accuracy and applicability of data
for predictive attribute models.

The key challenge is how to maintain and update EFI-derived
inventories as they age. To address this, two main topics require
consideration:

1. The availability and suitability of remotely sensed, geospatial
and environmental data to regularly update EFIs must be
explored and tested.

Many studies have proposed the use of various remote sensing
datasets and platforms including optical satellite, aircraft-based
and, most recently, remotely piloted aerial systems (RPAS; White
et al., 2016). It is widely recognized that advanced remote sens-
ing datasets can significantly improve the accuracy, precision and
spatial extent of forest inventories (e.g. Tompalski et al., 2021a);
however, objective workflows for how these data can be cost-
effectively integrated into inventory framework are less clear.
While the primary focus of this study, it is important to recog-
nize that remote sensing data alone are not a universal solu-
tion. Field measurements and validation of remote sensing prod-
ucts will always be essential for ensuring reliability of inventory
updates.

2. There must be a systematic framework to simultaneously
update forest extent information in the event of disturbance,
predict future growth and yield, and integrate information on
forest management or silvicultural activities such as thinning
and harvesting.

Assuming a combination of datasets can be utilized for inven-
tory update, a critical component of the framework is considering
which attributes within a forest inventory’s large range should
be updated, at what temporal frequency and how accuracy
in change detection and reporting should be addressed and
reported.

With these two fundamental concepts in mind, the purpose of
this article is to develop the critical components of a conceptual
forest inventory update framework, or living inventory, including
inventory and growth monitoring, change detection and error
propagation. In this article we conduct a review and propose
that the increasing availability of finer spatial resolution remote
sensing imagery at faster cadence provides a foundation where
various data types can be integrated at multiple spatial and
temporal scales to facilitate inventory update. We propose a near
real-time forest inventory framework consisting of four major
components: (1) a fine scale baseline EFI; (2) continuous change
monitoring; (3) change analysis and reporting and (4) growth
simulations.

In this article, to develop the underlying datasets and the
proposed approach, we first review the range of data types
proposed to drive the forest inventory framework. We then high-
light the critical components of a forest inventory update frame-
work including inventory and growth monitoring, change detec-
tion and error propagation. We then discuss the current limita-
tions of the proposed framework, and conclude by discussing
outstanding needs for real-time monitoring of actively man-

aged forested areas. The review is laid out as follows: In the
following section, we discuss changes in data availability and
cadence which is driving the ability to increase inventory update
cycles. We focus on increasing availability of satellite data—
particularly those from virtual constellations—as well as the
availability of CubeSat and RPAS. We also highlight the availability
of 3D point-based datasets that allow accurate estimation of
forest structure as derived from digital photogrammetry. In the
next section, we propose the framework for the living inven-
tory, describing each of the key aspects including detection and
mapping of disturbances, and incorporate growth estimates.
We then discuss how forest attributes within the inventory can
be updated following either disturbance or growth. In the final
section, we discuss additional considerations when developing
an inventory update framework including error propagation, near
real-time computation, additional datasets and resource require-
ments. Finally, we conclude with overall implications for forest
management.

Changes in data availability and cadence
drives potential for regular forest updates
Incorporating multiresolution, multisource remote sensing data
can help inventories achieve numerous monitoring and updating
goals. A wide range of remote sensing datasets can support
forest inventory update with differing strengths and limitations
(Table 1). These datasets vary in spatial and spectral character-
istics, frequency of data acquisition and cost. In turn, defining
their utility will then depend on strategic, tactical and opera-
tional inventory goals. In this section, we outline data types with
potential for integration into the proposed framework, focusing
primarily on their inventory update and monitoring potential
rather than a one-time forest attribute estimation. The utility of
other, potentially complementary, remote sensing data streams
is discussed in later sections. Several comprehensive reviews have
been written on the suitability of remote sensing data for forest
updates, and we recommend these reviews to readers requiring
a more detailed background on each (see the recommended
literature in Table 1).

Satellite optical data for forest cover change
Moderate-resolution satellite imagery

Satellite imaging at landscape scales (moderate spatial resolu-
tion; 10–100 m) has been prevalent since the 1970s, allowing
the development of long-term trajectories with which to cali-
brate change detection models. The Landsat satellite archive is
the most widely used source of observations facilitating change
detection (Gómez et al., 2016) and is the most defensible option
to drive a change detection system for a number of key rea-
sons. The archive dates back to 1972, with 30-m spatial res-
olution observations beginning in 1984. Consistent investment
in the Landsat programme has facilitated continuous, uninter-
rupted global coverage derived from eight iterations of satellites,
with future missions planned to ensure the future trajectory of
the record (Wulder et al., 2019; Masek et al., 2020). Additional
benefits of Landsat derivatives are their high quality and free
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Table 1 Selected characteristics of remote sensing data sources.

Data source Scale/resolution Update potential Relevant literature Cost

Satellite optical data for
forest cover change

Moderate–spatial-resolution
satellite imagery (e.g. Landsat 8,
Sentinel-2)

10–30 m Medium spatial
resolution, moderate
temporal resolution

(Phiri et al., 2020; White
et al., 2017b; Zhu, 2017)

Free

High–spatial-resolution satellite
imagery (e.g. PlanetScope, Spot
6&7, WorldView-3)

1–6 m Targeted acquisitions for
areas identified as
change, strategic
sampling tool

(Francini et al., 2020) $/$$

Aircraft-based data for
3D analysis

ALS <1 m
Cell (e.g. 20 m) or
individual tree level

Establishing the initial
EFI; wall-to-wall or
targeted EFI update

(Lim et al., 2003; White
et al., 2013; White et al.,
2017a)

$$$

Digital aerial photogrammetry <1 m
Cell (e.g. 20 m) or
individual tree level

Wall-to-wall EFI update,
requires prior ALS
acquisition to establish
ground reference

(Goodbody et al., 2019;
Iglhaut et al., 2019)

$$

Aircraft-based data for
forest cover change

RPAS <1 m Targeted acquisitions to
provide detailed
information on change

(Goodbody et al., 2017;
Torresan et al., 2017)

$

availability, which have resulted in increasing data demand, as
well as interest in development of algorithms with which to
derive change (Wulder et al., 2012a). Finally, Landsat data are
analysis-ready products (ARP), meaning that data are calibrated,
atmospherically corrected and geometrically registered mea-
surements of surface reflectance. This aspect of the data increase
confidence that detections of change are being associated with
the actual change on the land surface rather than originating
from misregistration artefacts or atmospheric effects such as
cloud and/or haze. As a result, any continuous change monitoring
programme should utilize the Landsat archive as a primary data
source.

The addition of Sentinel-2A and 2B imagery—launched in
2015 and 2017 respectively—offer an additional source of mod-
erate spatial resolution imagery with similar spectral bands to
Landsat, as well as additional complementary bands covering
spectral regions like the red edge (705–783 nm; 865 nm), which
are critical for vegetation assessment. Sentinel-2 has a spatial
resolution of 10 m in some spectral bands, which is finer resolu-
tion than most of the bands on the current Landsat sensors. How-
ever, due to its launch in 2015, Sentinel-2 is unable to match the
long temporal coverage available from the Landsat programme,
thereby limiting the development of, for example, long-term
spectral baselines. The temporal revisit of Sentinel 2A or 2B alone
is 10 days; however, when data are used interchangeably, the
repeat cycle can be reduced to 5 days, providing a dense time
series. The relatively recent launch of the Sentinel-2 satellites is
resulting in a rapid increase in research on the suitability of these
data for forest cover assessment and change.

Passive optical satellite sensors are notable for their success
for accurate and consistent detection of changes in forest area
coverage (White et al., 2017a). While approaches for detecting
stand replacing disturbances are well established, non–stand-
replacing disturbances originating from disease, windthrow or
insect outbreaks often result in lower reported confidence and
are an ongoing area of development using this type of imagery.
This is principally due to the variability in non–stand-replacing
disturbances in a forest over space and time, as well as detection
difficulties due to their often-subtle alterations to forest canopies
and structure (Woods, 2004).

Senf et al. (2017) provide an in-depth review of the use of opti-
cal remote sensing data for insect disturbance characterization
and advocated for the operationalization of near real-time mon-
itoring of insect disturbances. Studies have indicated that bands
in the shortwave part of the spectrum are particularly important
because they can detect changes in leaf water content, leading
to the discolouration of the foliage following disturbances such
as drought (Moreno-Fernández et al., 2021) or bark beetle infes-
tations (Ye et al., 2021). Changes in water content, and associated
changes in spectral reflectance, are increasingly being monitored
using time series data providing a means of detailing spatial
and temporal disturbances associated with these non–stand-
replacing disturbances. Not all changes will be intuitive, however,
especially when monitoring for subtle changes in forest stands.
For example, a non–stand-replacing disturbance which reduces
tree canopy cover could result in an increase in understorey light
and thus an increase in understorey vegetation productivity. This
could lead to a corresponding increase in vegetation greenness at
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a pixel scale, rather than a decrease as would be anticipated with
the disturbance. The ability therefore to track these small spatial
scale, non–stand-replacing disturbances remains an active area
of research and one for which additional study is needed. What
is clearly needed, however, is an examination of the gradual
spectral changes in a variety of spectral indices over time (de
Beurs and Townsend, 2008; Eklundh et al., 2009; Spruce et al.,
2011; Olsson et al., 2016).

Fine spatial resolution satellite imagery

Technological development has driven a rapid increase in the
availability of high spatial resolution satellite imagery (<5 m),
of which several platforms have successfully been used to
support forest inventory updating and provide auxiliary data
for the already delineated changes. Satellite sensors including
WorldView-3, Pleiades or SPOT 6&7 are capable of providing mul-
tispectral imagery with spatial resolutions of 1.24 m (WorldView-
3), 2 m (Pleiades) or 6 m (SPOT 6&7). The major drawback of
these datasets is that they have a small coverage relative to
moderate resolution satellite archives, are high cost to users
and provide low temporal resolution. For example, in the case of
Pleiades, the nominal revisit time is 26 days (nadir) with a swathe
width of 20 km (compared to 185 km in the case of Landsat
8). To overcome the limitations associated with low temporal
resolution, several of the existing high–spatial-resolution satellite
sensors are deployed in constellations of two (e.g. Pleiades,
Spot 6&7), five (e.g. recently decommissioned Rapideye) or even
hundreds of satellites (PlanetScope). In addition, sensors can be
shifted to oblique view angles with respect to the track to acquire
off-nadir imagery. In the case of Pleiades, this reduced revisit
time to 14 days (nadir, two satellites) or 4 days with a roll of 30◦.
However, changing view angles may correspond to subsequent
changes in the utility of these data in a continuous monitoring
framework. While spatial resolutions are high, the uptake of these
datasets within forest inventory frameworks are largely limited
by much higher costs, especially when multitemporal analysis
are considered.

Compared to other high–spatial-resolution satellite imagery,
the relatively lower cost and very high temporal resolution of
PlanetScope imagery makes it a key source of data offering
additional insight into recently disturbed areas of forest. Plan-
etScope consists of—at the time of preparing this manuscript—
over 200 satellites that measure 10 × 10 × 30 cm and are
equipped with a relatively simple four-band multispectral sensor,
with plans for more spectral bands to come on future satellites.
PlanetScope imagery is positioned on a lower orbit (400 km) and
can be acquired with very short revisit times of 1 day and spatial
resolutions of 3 m—all crucial characteristics for developing a
near real-time forest inventory update framework (Francini et al.,
2020; Leach et al., 2019). A drawback to these data, however, is
that imagery is acquired using relatively inexpensive sensors. The
focus of PlanetScope has largely been to produce a large quantity
of satellites, resulting in lower spectral and radiometric data
quality, which in turn challenges the output of consistent wall-to-
wall mosaics (Leach et al., 2019). As a result, the current strength
of PlanetScope imagery is in the ability to provide near real-
time targeted acquisitions of areas undergoing change. When a
change has been flagged at moderate-to-broad scales (Landsat,

Sentinel), these data can be used to inform upon what drivers
of that change might be, or how the forest ecosystem has been
affected. Use of these high-resolution data to monitor disturbed
areas through time also provides a means to understand and
document how forests respond to change through time, a key
component of inventory update. Investment and research to
improve the spectral and radiometric resolution, quality, and
consistency of these data is likely to result in a powerful and
multipurpose dataset with large impacts in change detection and
attribution frameworks.

Satellite constellations
One of the most significant developments in the delivery of Earth
observation data for forest cover monitoring is the increasing use
of satellite constellations. Satellite constellations have the ability
to overcome the limitations of single sensors by recognizing
that data from multiple concurrent sensors can be integrated
and harmonized to produce a common data product (Wulder
et al., 2015). Constellations can, in principle, result in data being
combined from sensors with similar spatial, spectral, temporal
and radiometric characteristics, allowing these data to be used as
if they were acquired from one satellite system, with key benefits
like increased temporal revisit. Indeed, the use of constellations
instead of their component satellites reverses the negative rela-
tionship between temporal revisit times and spatial resolution
(Figure 1).

The concept of satellite constellations is not new, with a num-
ber of Landsat satellites producing data concurrently during the
1990s and 2000s (Wulder et al., 2008b) and the NASA Terra and
Aqua Earth observing satellites being designed to provide morn-
ing and afternoon overpasses producing identical products at an
increased temporal resolution (Savtchenko et al., 2004). The last
decade, however, has seen a much greater emphasis on satellite
constellations. As discussed in a later section, the PlanetScope
CubeSats form one of the most extensive constellations with
over 200 individual satellites, acquiring imagery globally from
identical platforms, allowing the constellation to acquire over 3
million km2 of data daily, at a 3 m spatial resolution. Similarly, the
European Space Agency (ESA) Sentinel 2A and 2B satellites are
designed as a two-satellite constellation reducing the temporal
resolution of a single satellite from 10 to 5 days under the same
viewing conditions.

Building on the concept of constellations, a virtual constella-
tion is where data are combined from sensor systems but not
necessarily from the same family of satellites (Wulder et al.,
2015). The most current example of a virtual constellation is
the development of the harmonized Landsat sentinel (HLS;
Claverie et al., 2018; Bolton et al., 2020) data series, which
involves reprocessing both the Landsat 8 and Sentinel-2 satellite
archives to produce a radiometrically, spectrally and spatially
consistent global product at a 30 m spatial resolution. The
temporal resolution of HLS is 2–3 days (Masek et al., 2022),
and will potentially be further reduced once data from Landsat
9 (launched September 2021) and Sentinel-2C (scheduled to
launch in 2023) are integrated into the product. While some
of the benefits of the individual satellite datasets may be
impacted—i.e. loss in spatial resolution or particular spectral
bands of Sentinel-2—the result is a highly calibrated data stream
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Figure 1 Relationship between temporal and spatial resolution for various remote sensing satellites (left) and their constellations (right).

with a temporal resolution much finer than individual satellite
programmes alone.

Very high spatial resolution aircraft or RPAS imagery
As mentioned, aerial imagery has been the cornerstone dataset
for forest inventory management, having remained integral to
forest inventory workflows for decades (Zsilinszky, 1962). Routine
and preplanned at regional or national levels, as part of govern-
ment mapping initiatives (Goodbody et al., 2019), these data can
be acquired as panchromatic, true-colour and infrared imagery.
The use of stereo- and multi-image matching datasets—used
to generate orthorectified imagery and mosaics—are common
inputs for the interpretation of stand boundary delineation and
species composition estimates (Leckie et al., 2003). This abil-
ity to acquire imagery and generate high-resolution mosaics at
any time of the year facilitates ‘on-demand’ interpretation of
resources for inventory purposes. The past 5 years have seen a
significant increase in the use of RPAS to acquire high–spatial-
resolution imagery and its subsequent use as an inventory and
monitoring platform (Ivošević et al., 2015; Zhang et al., 2016).
While limitations to the use of the platforms vary based on size,
locale and intended use (Coops et al., 2019), they have become
ubiquitous given their low cost, fast operationalization and the
ability to acquire user-defined data at very high spatial resolu-
tions (<10 cm). The benefits RPAS can provide for operational
management tasks and inventory datasets are numerous. Firstly,
their capacity to provide information on forest cover and change
at stand and individual tree scales promote their use for enhanc-
ing managerial precision (Goodbody et al., 2017; Iglhaut et al.,
2019). This is especially relevant in intensively managed stands,
where harvest openings are often less than 5 ha in size, or in
industrial tree-farm settings, where optimal harvest rotations for
individual trees must be established to maximize profit. The abil-
ity to quickly deploy and acquire user-defined data in operational
scenarios such as these provide a means of deriving individual

tree- and stand-level wood procurement data routinely, helping
to realize added value, improve cost savings and establish new
value chains.

Aircraft-based data for 3D analysis
The use of ALS in forestry is recognized globally as mature,
routinely being applied to forest management and operations
(Næsset, 2002; Coops et al., 2004; Reutebuch et al., 2005; Wulder
et al., 2008a; White et al., 2013) and critical for the generation
of an EFI. While ALS is widely used in an area-based approach
to forest inventories (Næsset, 2002), which is now operational
in many jurisdictions (Woods et al., 2011; Næsset, 2015; White
et al., 2016), its use as an update tool is less common. The use of
high–spatial-resolution aircraft imagery has been spurred by the
interest in image-based point clouds or digital aerial photogram-
metry (DAP), which also facilitates accurate 3D representation of
forest canopies (White et al., 2015; Goodbody et al., 2019; Iglhaut
et al., 2019).

DAP utilizes automated photogrammetric approaches where
pixels are matched on overlapping images and the vantage point
of the camera to their location computed (Hirschmuller, 2005).
Pixels are then mapped in 3D space in a point cloud which shares
similarities to those acquired by ALS, however, pixels are used
instead of directed light energy (White et al., 2015). The much
lower cost of DAP data acquisition compared to ALS enables per-
forming more frequent updates of forest inventory attributes with
accuracies similar to when ALS point clouds are used (Hawryło
et al., 2017). In addition, DAP data can be acquired from a
wide variety of airborne platforms depending on information
needs with both wall-to-wall datasets as well as targeted data
acquisition over stands being possible. The flexibility of DAP to
be acquired from a variety of platforms has seen DAP from RPAS
an emerging field. Studies assessing the capacity for DAP data
collected with RPAS to perform updating tasks such as Ali-Sisto
and Packalen (2017) found that DAP was able to detect clearcuts
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with 98.6% accuracy, while thinning treatments were 24.1%
accurate. Honkavaara et al. (2013) found that DAP was able to
detect with 100% accuracy where more than 10 trees/ha fell as
a result of storm conditions. These studies both indicate that DAP
is capable of detecting major changes in forests, but may be less
accurate in detecting minor changes to, for example, individual
trees from a non-dominant canopy layer or changes to structure
below the outer canopy surface.

A framework for near real-time forest
inventory
A schematic diagram of the overall framework is shown in
Figure 2. Critical to a near real-time forest inventory system is
the requirement for an accurate and spatially exhaustive EFI
upon which management actions, disturbances and growth can
be synthesized. Typically, an EFI is derived on a regular grid (or
raster) using statistical summaries of 3D point clouds, typically
ALS data (White et al., 2016). Models are developed relating
forest inventory attributes important for timber assessment
to statistical summaries of the 3D point cloud (Bouvier et al.,
2015; White et al., 2017a). Additional inventory attributes with
known value for forest management such as cover stratified by
vertical layers, primary and secondary structural variation and
biomass estimates can also be computed to inform on forest
ecosystem goods and services (Andrew et al., 2014; van Berkel
et al., 2018; Frizzle et al., 2021). Using an EFI as a base in a real-
time monitoring framework has numerous benefits:

• It is highly spatially detailed in a regularized grid that is com-
mensurate with most moderate-resolution satellite imagery
datasets.

• Models driving the EFI have known error budgets resulting from
statistical models and ground validation plots.

• The modelling approaches and types of input datasets are
somewhat flexible, meaning that an EFI can be tailored to the
needs of the user.

• 3D data descriptions and field plot measurements enable
modelling of multiple inventory attributes through time.

• The area-based approach to forest attribute estimation is sup-
ported by years of scientific research and offers accurate and
detailed estimates of multiple forest attributes.

To update the EFI, different routines would need to be estab-
lished depending on the disturbance type. In undisturbed pixels,
forest attributes could be projected forward using existing growth
simulators (e.g. Falkowski et al., 2010; Tompalski et al., 2018).
After a stand-replacing disturbance (e.g. fire or harvesting) stand
attributes would be reset and the area would be continuously
monitored to assess the regeneration status. In case of non–
stand-replacing disturbances, a link between a change in the
spectral response and a change in the inventory attributes would
need to be established. It is acknowledged, however, that not
all attributes of interest can be accurately derived by the EFI
methodology. Lack of multispectral response from ALS returns
results in poor predictive ability to inform on tree species com-
position. As a result, information on species needs to be inte-

grated into the EFI from a combination of existing polygon-
level inventories, broader-scale species predictions from climatic
and landform-based models, or by applying independent image
classification routines using multispectral optical datasets.

ALS-based pixel-level EFI estimates of forest attributes repre-
sent the baseline condition (T0). Updates to the baseline can then
be integrated using a variety of remote sensing datasets detailed
in Section 2. Across the entire forest estate, the framework is
applied at the same grid resolution, either the same as the base-
line EFI (e.g. 20 × 20 m), or is resampled to match the resolution
of the core remote sensing data used to monitor changes (e.g. 30
× 30 m). It is also assumed that no change has occurred between
the ALS data acquisition and the prediction of the EFI attributes.

Considering the characteristics of data used to monitor
changes, described previously, as well as computational needs
related to data processing, we propose a 14-day update cycle,
although we recognize the exact update frequency can be
adjusted by the user and will also depend on the availability
of cloud-free observations. Based on available remote sensing
datasets described in Section 2, we propose that HLS is used
as the primary data to monitor and detect changes and every
14 days. Because the temporal resolution of the HLS data is
2–3 days, up to four images could be available during the 2-
week period, depending on the cloud cover. Multiple algorithms
are available to detect the change from a dense time series
of spectral data including HLS data. In the following, we first
propose an existing change detection algorithm to detect
change within our near real-time inventory framework and then
detail how additional remote sensing datasets and acquisition
platforms could be integrated at varying spatial and inventory
scales to update baseline EFI data.

Continuous monitoring and change detection
Changes in the spectral trajectory of individual pixels to date have
most often been undertaken at annual time steps, using annual
imagery composites (Hermosilla et al., 2015; Cohen et al., 2018;
Griffiths et al., 2019; Corbane et al., 2020). These composites
allow for a cloud-free image to be created and ensure that the
influence of phenology is minimized using only images acquired
within a predefined summer date range. While this produces
cloud-free, high-quality image composites, it also limits the abil-
ity to assess seasonal variation or fine spatial changes occurring
in the landscape due to the 30 m resolution.

A number of approaches have been developed to automate
the detection of changes in forested landscapes (Kennedy et al.,
2010; Hermosilla et al., 2015; White et al., 2017b; Cohen et al.,
2018) using monthly, seasonal or annual change detection
approaches. One well-established change detection technique
designed for weekly or biweekly remote sensing observations
is breaks For additive seasonal and trend (Verbesselt et al.,
2010), which integrates the iterative decomposition of time
series of remote sensing values into trend, seasonal and
noise components. This allows the algorithm to change in
the time series, without needing to select reference periods,
thresholds or trajectories (Verbesselt et al., 2010). Zhu and
Woodcock (2014) developed the continuous change detection
and classification (CCDC)—an approach that uses all available
Landsat data to move from annual to intra-annual forest
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Figure 2 A schematic diagram of the proposed framework. After the generation of a baseline EFI (top), a time series of satellite imagery are used to
monitor for change in near real time (left). If a change is detected (right), cells are flagged (red outline on top of grey background) for a targeted data
acquisition. If no change is detected, then existing cells are forecast through time using growth models (bottom).

canopy cover monitoring. This was expanded upon in Zhu et al.
(2020), in which a new algorithm, COntinuous monitoring of
Land Disturbance (COLD) was presented that offers increased
accuracy in change monitoring compared to CCDC. Zhao et al.

(2019) demonstrated the efficacy of a Bayesian model averaging
approach that can be used to detect changepoints and trends
in spectral bands or indices while modelling and accounting
for their seasonal variation. Attribution of the type and time of
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Figure 3 Conceptual diagram of the continuous change detection algorithm. For each pixel, a long-term phenology trend is derived based on the HLS
record. Cloud-free observations are then analysed in near real time, and change is detected once the spectral trend does not match the historical
trend.

change are invaluable to a change detection algorithm. While
some algorithms are able to determine a change or no change,
some are able to attribute the change to a specific disturbance
type. For example, methods presented in Cardille et al. (2022)
demonstrated that a multisensor time series of a single spectral
index (such as the normalized burn ratio, NBR) can be used to
determine the type and season of change. A change detection
and monitoring algorithm based on kernel density estimates
was developed in Decuyper et al. (2022), in which a probability of
change is associated with pixels of interest based on deviations
from a reference frequency distribution.

In these and other approaches, rather than using a single
image, or image composite per year, each pixel is assumed
to have an underlying periodic behaviour associated with
phenological vegetation patterns. By fitting trajectories to
chronosequences of pixel-level spectral index values, the
algorithms learn the behaviour of each pixel through a training
period and then detects deviations from those seasonal patterns
over time (Figure 3). For example, a deciduous stand will have a
highly pronounced pattern in its spectral trajectories associated
with leaf-on and leaf-off conditions (White et al., 2017b).
Should the stand ultimately be harvested, index values for
a particular pixel will follow these sinusoidal patterns until a
disturbance event and then deviate. The degree to which the
pixel deviates from the periodic phenological pattern can provide
detail into the type of change, and consequent land cover of
that individual pixel (Figure 3). Though coniferous stands have
less pronounced seasonal dynamics, slight sinusoidal pattern
behaviour can be observed and modelled using this approach as
well (Seyednasrollah et al., 2021).

Based on the review, we would propose that a forest inven-
tory update system be designed to be undertaken at a spa-
tial resolution which matches the EFI grid cell size with the
desired HLS spatial resolution. Spectral bands (covering 400–
2500 nm) or indices from HLS, can then be fitted using a change
detection algorithm to flag forest disturbances. If the algorithm
detects a significant deviation of the trajectories of the spectral

bands or indices at a given time step, the cell is flagged as
changed.

Stand-replacing disturbance
In the case of a stand replacing disturbance, deviation from
the anticipated unchanged spectral response in a single spectral
channel (short-wave infrared) with a fixed threshold is sufficient
to detect change (Zhu et al., 2012). The intensity of the distur-
bance event, which has resulted in the pixel being flagged, can
be assessed by analysing the degree of change in the spectral
value. In the simplest case, if the change in short-wave infrared
reflectance exceeds a large predefined threshold, then a com-
plete removal of vegetation could be assumed to have occurred
(i.e. a clear-cut harvest) and the pixel would be reset to a non-
vegetated state, awaiting a trigger to commence regeneration
at a later date. Zhu and Woodcock (2014) demonstrated that
the threshold for a change event such as a stand-replacing
disturbance can be based on the RMSE of the fit of the trajectory
to the time series. If the spectral signal deviates from model
prediction by more than three times the RMSE, then a change has
occurred. The spectral value in subsequent time steps can also
be monitored to validate the change to ensure it was not due to
noise or other perturbation in the spectral response.

Non–stand-replacing disturbances
We anticipate lesser magnitudes of reflectance change for non–
stand-replacing disturbances such as insect infestation, drought
or silvicultural treatment such as thinning compared to those
associated with the complete removal of vegetation (Coops et al.,
2020). Pixels with lesser deviations from the anticipated trend
would need to be monitored for a series of additional time steps
to validate, and likely to have lasting impacts on the forest
stand. Monitoring the spectral trajectories over time, after the
initial deviation, would increase confidence in the detection of
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Figure 4 Theoretical response of NBR, greenness and brightness to different non–stand-replacing disturbances. Also depicted is a typical spatial pattern
(natural or anthropogenic) of those disturbances. In the figure, ‘Thinning’ refers to precommercial thinning, wherein the timber value of removed
trees is low. In the ‘Pattern’ column, anthropogenically derived boundaries are represented by rectangles while geometric shapes represent those not
directly associated with anthropogenic drivers.

the disturbance as well as help discriminate amongst distur-
bance agents (Senf et al., 2017). Explicit separation of distur-
bance types could be performed through monitoring the mag-
nitude of change and spectral signature of change via the use
of spectral indices such as the NBR, greenness indices such as
the normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI) or the Tasseled Cap greenness component,
and a spectral index which has been shown to be sensitive to
exposed soil such as Tasseled Cap Brightness (Goodwin et al.,
2008; Meigs et al., 2015). These indices in combination with
spectral bands can provide an initial determination on the most
likely non–stand-replacing disturbance agent occurring in the
stand. An example of the logic is shown in Figure 4 below.

Spatial arrangements of flagged pixels can be assessed to
examine whether a pixel is isolated in a group of otherwise
unchanged pixels, or if there are spatial clusters of pixels flagged
as undergoing change. If a spatial cluster is apparent, it can
be clustered and attributes on the size and shape of the dis-
turbance calculated to inform the type of change. The charac-
teristics of these objects can also be monitored over time to
help infer information on change (Kennedy et al., 2012). Previ-
ous research has clearly shown that harvesting operations are
more likely to occur in regular-sized polygons of particular size,
commensurate with the forest management policy at the time
(Hermosilla et al., 2018). In contrast, forest fires are likely to
result in a patchier disturbance of varying severities and different
sizes (San-Miguel et al., 2017). In the case of insect infestations,
the change may occur in small clusters of pixels which would
be associated with small-scale outbreaks, or much larger areas
which could be indicative of broader scale infestation events. The
timing within the year of detected change can also be informative
on the type of change occurring. While Figure 4 demonstrates
theoretical changes for single, discrete disturbance events, it
should be noted that multiple non–stand-replacing disturbances
could occur at approximately the same time, as disturbance
agents such as insects, drought and blowdown can be linked

(Senf et al., 2016, 2017; Seidl and Rammer, 2017). In these
cases, the spectral signatures of disturbance may be mixed and
additional work to separate the types of disturbance may be
needed.

Fine-scale analysis of disturbed pixels
Additional fine-scale remote sensing datasets can be used to
ascertain the exact cause of the change and the implications on
the condition of the forest stand. These are targeted acquisitions
over areas of change where finer scale satellite imagery such as
PlanetScope or targeted aircraft and RPAS acquisitions come into
play (Figure 5). The temporal resolution of PlanetScope constel-
lation data would allow forest managers to quickly observe an
area flagged as change in order to detect the finer scale patterns
of the disturbance (Figure 6). While this imagery is typically not
of sufficient radiometric quality to be utilized through an auto-
matic change detection routine, single-image datasets are still
valuable in identifying change drivers as quickly as possible and
giving estimates of change attributes. A number of processing
pipelines have been developed to automatically coregister and
radiometrically normalize temporally dense series of PlanetScope
data (Leach et al., 2019). Such time series could be used to
quantify and map changes in stand attributes after a disturbance
is detected using HLS. As the constellation is regularly acquiring
imagery, continued data access—allowing managers to lever-
age localized areas on a user request basis (thus being cost
effective)—would ensure that imagery could be viewed within a
short period of a detected disturbance. In the case of acquiring a
fine temporal sequence of high–spatial-resolution satellite data
to resolve this change, the focus should be on assessment of
changes in canopy cover, given the 2D nature of the acquired
imagery.

In the cases where information on change in vegetation struc-
ture is of interest, aircraft-based data acquisition may be better
suited than optical satellite data. Depending on the size of the
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Figure 5 Additional fine-scale remote sensing datasets can be used to detect both changes in land cover, such as harvest or fire or changes in 3D
structure using high-density RPAS point clouds.

Figure 6 An example of using high–spatial-resolution satellite imagery for fine-scale interpretation of disturbance. In this example, PlanetScope
imagery is used to observe a series of harvests near Quesnel, British Columbia, Canada.

disturbed area, a range of different acquisition campaigns could
be developed. For large disturbances, collecting data on the entire
area may not be realistic. In such scenarios, the area flagged
as change could be stratified, for example by the severity of
the disturbance or species composition. Airborne imagery could
then be acquired on targeted transects allowing for manual
interpretation to detect foliage discolouration or predict changes

in foliage area and amount. ALS or DAP acquisitions to quantify
changes in stand or individual tree structure like height and cover
associated with the disturbance are also feasible within cost con-
straints. By comparing these estimates with the most recent EFI,
a severity of change could also be determined. While the cost of
performing an update with an aircraft may be costly (particularly
across large areas), we expect that as RPAS technology becomes
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more mature that the ability to acquire user-specified data over
disturbances will become more automated and less limited by
flight times.

In the case of smaller disturbances, for example, across sev-
eral forest compartments, RPAS could be deployed to acquire
data. Orthophoto and DAP point clouds could be used to per-
form detailed characterization of changes, either through man-
ual interpretation or based on automated processing routines
(Arkin et al., 2019). Much like ALS acquisitions, RPAS-derived DAP
data could play a valuable role in updating EFI estimates. High
correlations between upper height percentiles for ALS and DAP
could enable transferability between the two datasets (Tompalski
et al., 2019), allow for reducing or eliminating the need to collect
field data required for model calibration and help to automate
attribute estimation post-disturbance. Prior knowledge of the
relationships between ALS and DAP metrics included within mod-
els is fundamental to this process. High-density DAP point clouds
derived from RPAS imagery would improve understanding of the
impacts of non–stand-replacing disturbances. Further, accretions
in forest attributes (e.g. increase in canopy cover) could help
forest managers assess silvicultural interventions such as fer-
tilization. Goodbody et al. (2017) demonstrated that an RPAS
data acquisition over a selectively harvested area could produce
accurate data with which to update the corresponding EFI. To do
so, DAP point clouds acquired using RPAS were used to estimate
individual tree height and volume increments. Individual trees
were detected from RPAS DAP canopy height models (CHMs) and
mean tree growth assessed from the change in CHMs. Similarly,
mean gross tree volume increments were computed over the
time period. We do recognize however that RPAS, while relatively
straight forward to conceptualize how these fine-scale, targeted
datasets can be used to detect and validate forest cover change,
the reality is that there can be significant costs involved in oper-
ating RPAS in a forest management programme. For example,
prices vary depending on the level of accuracy and automation
of the RPAS and the type of sensors deployed. Operator training is
required, and in some cases additional training is needed if RPAS
are to be flown near populated areas. Operational constraints
around where users can fly and battery life also limit the area
that these instruments can cover. As a result, the overall cost in
utilizing RPAS in this framework should certainly be recognized as
more than simply the cost of the RPAS unit itself.

Incorporating growth
Incorporating growth into the inventory is the third key compo-
nent of the framework (Figure 2). EFI cells unflagged for change
following the continuous monitoring module are assumed to
be growing within the 14-day observation period, and stand
attributes in each of the 20 × 20 m cells are adjusted based on
the available growth model, operating on an annual time step
(Figure 2). Individual growth curves assigned to each cell can be
used to increment height and volume (Tompalski et al., 2021a).
Changes in canopy cover over time are less likely to be included
in the growth model, so subsequent changes in spectral bands
or a greenness index can be used to update cell-level estimates
(Andela et al., 2013; Hansen et al., 2008).

Several techniques have been proposed to link raster-based
EFIs to forest growth models. These approaches can either utilize

tree- or stand-level growth models depending on existing forest
industry practices and growth model design (Lamb et al., 2018;
Tompalski et al., 2018). Using an area-based EFI, estimates of
volume, stocking density, DBH and height can be linked into
a stand growth model, assuming species information can be
derived from the existing inventory (Tompalski et al., 2016). In
the case of a tree-level growth model, tree lists would need to be
inferred within each EFI cell in order to allow the model to predict
tree growth (Lamb et al., 2018).

Utilizing growth curves on a cell-by-cell basis derived from
historical forest biometric information can be problematic in the
context of changing biogeoclimatic conditions. Research into
adaptive approaches for deriving growth estimates are therefore
needed. One such area is the use of simple physiological models
which utilize information on rainfall, temperature and sunlight
to predict stand growth over time. Conventionally, physiological
growth models (e.g. 3PG, Coops et al., 1998; Landsberg and
Waring, 1997) have been derived for large terrestrial areas and
biomes, however, with increased availability of fine-scale infor-
mation on climate and terrain, much finer scale spatial pre-
dictions of forest growth models are now possible (Coops and
Waring, 2001; Tickle et al., 2001). As a result, a climate-driven
forest growth model could be developed for given species and
management scenarios, and replace existing models based on
historical growth patterns alone.

Updating EFI attributes following disturbance detection
HLS-based continuous change monitoring should allow for timely
and accurate detection of disturbed areas and inform on the
disturbance type, area, severity and other disturbance-specific
characteristics (Claverie et al., 2018; Chen et al., 2021; Wulder
et al., 2021). Additional approaches are needed, however, to
translate and integrate detected changes in spectral proper-
ties into changes in EFI attributes. This final component of the
framework depends on the disturbance type, inventory attribute
and availability of additional data acquired after the disturbance.
In the simplest case of stand-replacing disturbances such as
clear-cut harvesting, the majority of EFI attributes (such as tree
height, volume and stocking) can be reset to 0. Rules for non–
stand-replacing disturbances will be more challenging to create
and implement (Senf et al., 2017). Once disturbances have been
detected, the framework can be used to assess the recovery of
disturbed areas in terms of the changes in associated attributes
such as height or stem density. However, under changing cli-
matic and management conditions, baseline assumptions that
the type and amount of vegetation regeneration (i.e. species
composition, density, health) is consistent with what was present
before may not be valid. As a result, any ongoing assessment of
a post-disturbance stand should be designed to be sensitive to
a variety of regeneration pathways (e.g. successful regeneration
vs invasive species dominance) not only for monitoring purposes
but also to assist silviculture decision making and facilitate the
planning of interventions as necessary.

Fine-scale data collection

To perform an update of EFI attributes, one potential scenario is
to collect additional fine-scale data over the disturbed area to
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facilitate greater accuracy of the updated attributes. These data
can include targeted field measurements, high-resolution satel-
lite imagery (e.g. PlanetScope), DAP data acquired with RPAS or, in
the case of large disturbances, ALS data acquired over transects.
In the case of updating with comparable 3D point cloud datasets
(both DAP and ALS), several of the EFI attributes may be updated
directly, without the need of developing or applying predictive
models. Specifically, canopy cover, stem density and height may
be inferred directly from the point cloud. Alternatively, existing
models (e.g. developed for the EFI at T0) can be applied to
estimate all of the inventory attributes, including basal area and
volume. However, existing studies have shown that such model
transfer often results in biased estimates (Tompalski et al., 2019;
van Ewijk et al., 2020). In such cases, additional data collected
in the field would allow to calibrate the models and result in
unbiased estimates.

Relating spectral indices to changes in EFI attributes

In another scenario, predictive models can be developed by com-
paring variation in pairs of EFI attributes to coincident changes in
HLS-derived spectral predictors (Figure 7). As the expected level
of accuracy of the estimated inventory attributes derived with
the developed models is lower than the accuracy of the EFI
predictions, instead of modelling the absolute attribute values,
the models can be designed to estimate their change. To do so,
the initial 20m EFI cells would be stratified by attributes such
as species composition, age, or productivity, depending on data
availability. Within each strata, pixels would then be grouped
in pairs (groups of all cells within a strata matched across a
single time step). For each pair, differences in spectral attributes
(e.g. difference in the near- and short-wave infrared bands, as
well as tracked spectral indices), and differences in EFI attributes
would be calculated. This would allow a library to be established
of the differences in inventory attributes and the corresponding
difference in spectral values. A model would then be applied to
estimate the relative change in EFI attributes, by strata, when a
non–stand-replacing disturbance is detected. A k Nearest Neigh-
bour (kNN) approach based on the change in spectral value of
the detected disturbance would be beneficial in this scenario as
it would allow all EFI attributes to be adjusted up or down simul-
taneously. An initial examination of the approach using available
ALS data from eastern Canada involved developing an EFI of key
attributes using the area-based approach. Raster estimates were
then merged with Landsat-derived spectral indices (NDVI, EVI).
Stands were then stratified according to species composition,
age and site productivity class, and within each strata all pixels
were paired, with differences for each pair calculated for EFI
and spectral values. Initial results demonstrated that using kNN
with a random forest-based distance metric produced models
capable of imputing change in stand attributes based on change
in spectral values.

Implementation considerations
Error propagation
Understanding the impact of error on the prediction of forest
inventory attributes through the living inventory framework is

Figure 7 Schematic diagram of how a change look-up table could be
developed to relate strata-level variations in spectral indices to reductions
in forest inventory attributes.

critically important in order to ensure that attributes are pre-
dicted reliably. As discussed throughout, the backbone of the
framework is a regular EFI, which could occur every 5–10 years
over a given forest management area. We envision that for-
est attributes would be predicted at each of these times using
periodic ALS acquisitions and that field programmes would be
instigated in order to develop and validate attribute prediction.
As a result, every time a new wall-to-wall EFI is developed, the
derived estimates of forest attributes will have associated error
estimates. Previous research has demonstrated that the relative
RMSE of height, DBH, basal area, volume is typically between 10
and 30%, with the highest accuracy corresponding to estimates
of height (Wulder et al., 2008b; White et al., 2016; Roussel et al.,
2017; Goodbody et al., 2019).

The inclusion of periodic update information should be seen
as an update to the EFI values rather than a recalculation of
absolute values at each time step. In other words, EFI-predicted
attributes could be either increased or decreased based on
these periodic update observations. For example, based on past
research, the majority of inventory attributes derived using DAP
would have similar or slightly lower accuracy than that of the
initial EFI (Goodbody et al., 2019). This accuracy does, however,
depend on a multitude of factors related to the dataset itself,
as well as the attribute of interest. While some attributes can
be estimated directly from the point cloud with relatively high
accuracy (e.g. height, canopy cover), some require a predictive
model to be developed first (e.g. basal area, volume) or could
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be supplemented with limited amounts of field data. In such
cases, either a field reference would need to be collected to
facilitate developing new models or an existing model developed
for the original EFI could be applied. The latter case (model
transferability) allows to markedly lower the cost of deriving the
estimates, however may pose a risk of significant bias (Tompalski
et al., 2019; van Ewijk et al., 2020). A third approach, based on
linking changes in volume or basal area with changes in height
and cover could be developed and applied (Mitchell et al., 2017).
As a result, estimates of attributes that require modelling would
be modified based on attributes estimated with different remote
sensing data sources.

In the case of growth model estimates, the fitting of the
growth curve to the annual observations in time has been
demonstrated to be impacted by the number of ALS observations
through the time sequence. Establishing which growth curve
is appropriate for each EFI cell using a single EFI estimate
of volume, height and DBH will result in lower accuracy than
when more estimates are used (Tompalski et al., 2018). As a
result, as the near real-time framework is applied over time and
additional ALS datasets are acquired, growth estimates for each
individual cell based on growth curves either derived statistically
or physiologically would improve.

The near real-time ‘time step’
When applying the near real-time framework to a forested area,
it is important to recognize that the appropriate definition of ‘near
real-time’ will likely vary. Utilizing a calibrated change detec-
tion algorithm in near real-time requires the regular availability
of analysis-ready remotely sensed imagery (such as HLS data
products). The latency between a Landsat overpass and the
availability of ARP from that overpass, is approximately 1 day
(Gorelick et al., 2017). The HLS product version 2.0 is intended
to continually update the available Sentinel-2 and Landsat 8
imagery with less than 2-day latency (Masek et al., 2022). Fur-
thermore, continuous change detection algorithms require mul-
tiple observations to reliably detect a disturbance (at least six
in the case of COLD; Zhu et al., 2020). Considering the temporal
resolution of the HLS product, latency and the number of required
images, approximately 14–20 days would elapse before the COLD
algorithm would automatically flag a pixel as changed, provided
all images were free of clouds, shadow and snow.

The use of the HLS markedly increases the probability of
obtaining a cloud-free image for a region of interest. For a contin-
uous monitoring framework reliant on optical data, the accuracy
and timeliness of change detection would be hindered in areas of
high cloud cover or prolonged snow as these pixels are commonly
masked out of resulting algorithms (Zhu and Woodcock, 2014).
For example, persistent clouds in tropical or coastal areas, or
persistent snow in high latitudes, would limit the number of valid
observations during a given time period, potentially reducing the
capacity of a change detection algorithm to establish the initial
long-term phenological trends or to detect change in a timely
manner. In these cases, the temporal update would need to be
extended. Even with the temporal resolution of 2–3 days, periods
of no data availability due to consistent cloud cover may occur
and may last for several weeks, or several months in the case of
persistent snow or ice.

The use of finer spatial resolution data to investigate change
once it is flagged requires much shorter time as the imagery
from for example PlanetScope is often available within 24 h
of acquisition. Manual interpretation of areas of change could
therefore be interpreted within a day. More complex analysis
requiring additional processing would certainly increase this time.
Should airborne imagery either from aircraft or from RPAS be
required to sample or spatially cover disturbance events such as
harvesting or fire, the timescale would be dependent on aircraft
or RPAS availability, weather conditions, surface conditions and
other factors. Most probably a start of RPAS data collection would
require more than a week of pixels being flagged as change from
the near real-time framework. However, while we have specified
a particular configuration of this real-time inventory framework in
this article, we acknowledge that it could be modified depending
on a number of factors related to the purpose of the forest
inventory itself. In this article, we have discussed the application
of the framework to be responsive to harvesting, silviculture
and other precision forestry operations which would require fine
spatial detail as well as high temporal fidelity as the decisions
made from the framework would be used along the entire supply
chain to inform upon harvesting and ultimately timber value.

Use of other datasets for temporal update
The proposed framework incorporates a subset of the available
remote sensing imagery archives. Opportunities for other
datasets could be utilized in this framework should be fully
explored. Data fusion could be considered, which would allow,
for example, satellite-based synthetic aperture radar (SAR) or
interferometric SAR to be used which have been used to inform
predictions of forest attributes (Mitchell et al., 2017). Across a
variety of studies, L-band SAR has been the most used and is
available as a global coverage from the phased array-type L-
band synthetic aperture radar system onboard the Japanese-
Advanced Land Observing satellite (ALOS). L-band SAR, with its
longer wavelength, has been shown to be more sensitive to
changes in biomass (Coops, 2002), especially at higher quantities.
Currently ALOS-2 imagery is producing annual 10-m spatial
resolution mosaics with increased temporal resolution in tropical
regions for forest and wetlands monitoring (Rosenqvist et al.,
2014). Future campaigns, such as the National Aeronautics Space
Administration - Indian Space Research Organisation Synthetic
Aperture RADAR (Radio Detection and Ranging) (NISAR) mission,
will allow global SAR observations with very high temporal
repetition (Rosen et al., 2015).

The shorter wavelength C-band SAR data which, while being
more commonly available from both RADARSAT and Sentinel-
1 satellites, has cost, temporal acquisition parameters and sat-
uration issues which often limit detailed temporal observation
and limited examples in forest monitoring. X-band RADAR has
also been used, acquired from the Tandem-X mission which pro-
vides elevation information as well as insights into the quantity
(and height) of forest vegetation when compared to conven-
tionally derived digital elevation models (Hyde et al., 2006). The
advent of sample-based lidar from spaceborne platforms includ-
ing Global Ecosystem Dynamics Investigation (GEDI) on the Inter-
national Space Station and Ice Cloud and land Elevation Satellite
(ICESAT)-2 offers intriguing possibilities of how these sample-
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based updates could be incorporated into the framework. While
this has not been developed in this article, a sampling frame-
work which would allow overall estimates of change in particular
growth to be monitored using regular samples of space-borne
lidar could offer an alternative to relying solely on growth models
to predict growth.

If the forest inventory is designed to monitor other ecological
goods and services beyond timber, for example inventory pro-
grammes in unmanaged forest areas where production is not the
primary driver of forest management, then both the temporal
update and the spatial scale of the framework could be altered.
Temporal updates could happen three or two times a year to
coincide with major seasonal updates and the spatial resolution
could be coarsened to allow for potentially more cost-effective
imagery solutions with respect to data acquisition. In this respect,
especially over large areas of unmanaged forest, the MODIS
sensor onboard Terra and Aqua satellites with daily between 250
m and 1 km resolution imagery since the year 2000 offers the
most cost-effective solution. Application of MODIS imagery has
proved particularly useful in near real-time monitoring of fire (Roy
et al., 2005), drought (Verbesselt et al., 2012) and pest and insect
infestations (Spruce et al., 2011). Much of this analysis has been
retrospective or used to quantify change in forest conditions at a
landscape scale at annual or decadal time steps (Xin et al., 2013).
However, in the case of forest inventory update, a clear disadvan-
tage of the MODIS datasets is their coarse spatial resolution, with
many forest cover changes occurring at much finer spatial scales
and as a result, a reliance on MODIS imagery data alone to detect
and characterize fine-scale forest cover change will result in low
detection rates at the tactical or operational scale.

Computation needs
While many of the datasets that have been proposed to be used
within the framework are provided in an analysis-ready format,
we acknowledge that the computing power and technical capac-
ity of the users to apply the framework is still high. It is unlikely
in these initial stages of deployment that the framework could
be applied by local forest managers and that a high degree of
processing capability and coding may be needed to establish this
framework and ensure its accuracy at least in the short term
by remote sensing professionals. As these frameworks become
more common and data providers are more regularly producing
ARP, then the framework could be applied more easily to forest
focus sites without the need for such technical skill.

Implications for management
Forest management in the 21st century faces changing infor-
mation needs, resource demands and pressure on landbases
(Messier et al., 2015; D’Amato et al., 2018; Hagerman and Pelai,
2018; Achim et al., 2021). The living inventory framework outlined
above is proposed to address these challenges. The successes
highlighted in the reviewed literature should provide a mecha-
nism by which forest managers can combine EFI forest attributes
with an update process, driven by satellite data. Under the pro-
posed framework, forest managers will have access to refined,
detailed, and timely information upon which they could rely to

make management interventions and develop operational plan-
ning (Puettmann, 2011; O’Hara and Ramage, 2013). Additionally,
managers will have an expanded capacity to apply remediation
measures after disturbances, thereby reducing resource losses
(Senf et al., 2017).

In the first phase of the near real-time monitoring framework
where high cadence satellite optical data flags disturbances, we
envisage this could be implemented and maintained centrally by
forest agencies—ideally in a cloud-based platform to allow open
access and wide usage. By running this centrally, it could lead to
a large user community, many of whom may not be trained in
remote sensing but tasked with monitoring forest disturbance at
the landscape scale. Users could then be notified of changes in
stands of interest through targeted alerts provided by the system.

Once a disturbance for an area is flagged, targeted data acqui-
sition may be required. In remote areas, high–spatial-resolution
satellite data may be sufficient to assess the disturbance and
identify potential next steps. In more accessible areas, RPAS
acquisition or field sampling could be performed. Either way,
the framework would need to trigger some additional imagery
capture or field work programme to allow additional investigation
into the disturbance and its implications on the forest resource.
This is also where private–public partnerships and links to forest
consulting companies are needed to allow additional resources
and expertise to be utilized to both obtain this more detailed
information, as well as aid in its interpretation. Detailed and
timely knowledge of disturbance severity, location and type will
help determine the necessity for management responses such as
salvage harvest or planting. Likewise, this targeted data acqui-
sition allows for the efficiency of management to be improved,
due to a likely shift from systematic sampling towards sampling
based on areas of interest (Queinnec et al., 2021). When imple-
mented, we believe the proposed framework can improve the
timeliness and level of detail associated with forest inventories.
An enhancement to the information quality in this way can
undoubtedly be beneficial to forest management, particularly
given the challenges seen in the present and changes expected
in future.
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