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A B S T R A C T   

Forest ecosystems and timber products are expected to play a determining role in climate change mitigation and 
adaptation. As the frequency and severity of natural disturbances increase, remote sensing technologies prove 
crucial for detecting and assessing the impact of natural disturbance on forest condition and productivity. 
Although satellite-based remote sensing is commonly used for measuring the extent and severity of stand- 
replacing disturbances such as fire and harvest, capturing the effects of subtler, non-stand replacing distur-
bances (NSR) remains challenging. Studies based on the analysis of tree rings have yielded insights on the impact 
of such disturbances at a local scale, yet tools for estimating the compound impact of NSR disturbances on 
broader scales are lacking. The objective of this study was to use Landsat time series spectral reflectance in-
formation in conjunction with tree-ring data to generate spatially explicit estimates of growth declines attrib-
utable to NSR disturbances at a 30-meter resolution across black spruce-dominated stands in two managed boreal 
forests. Basal area increment (BAI) calculated from 1545 increment cores collected in 52 plots across the two 
study sites were used to assess the growth decline in each plot due to NSR disturbance events from drought and 
insect defoliation. Plots that experienced a severe growth decline were identified using a threshold (i.e., a 
decrease in BAI ≥ 23.7% between two consecutive 11-year periods) established after examining the historical 
variability in growth rates from the tree-ring data. Subsequently, a logistic regression model was developed to 
predict the probability of a plot sustaining a severe growth decline, using predictors from Landsat time series and 
topographic variables derived from airborne laser scanning data, achieving an accuracy of 79.2% after five-fold 
cross-validation. In a subsequent modelling step, plots that experienced severe declines in BAI were used to 
construct a linear model, predicting the magnitude of the decline in BAI attributed to NSR disturbances using 
predictors from Landsat time series, and resulting in a model with an R2 = 0.70 when using five-fold cross- 
validation. Model predictions were then applied to black spruce-dominated stands at both study sites to estimate 
the impact of disturbances on forest productivity. Depending on the study site, between 22.6% and 57.6% of the 
analysis area had a predicted probability of severe growth decline > 50%. Within the most affected areas, the 
median decrease in annual BAI predicted using the OLS model was 95.3 and 64.4 mm2 yr− 1, respectively, for the 
two study sites. This research demonstrates the utility of combining tree ring and Landsat data to assess the 
impact of non-stand-replacing disturbances on forest growth at the scale of a forest management unit that in turn 
could inform salvage and/or silvicultural interventions that enhance the resistance and resilience of vulnerable 
stands.   

1. Introduction 

Forest ecosystems and timber products are expected to play a 
determining role in climate change mitigation strategies (Nabuurs et al., 
2007; Smyth et al., 2014). Boreal forests represent approximately 

one-third of the world’s forested area, and similar proportions of the 
global terrestrial biogenic carbon stock and lumber produced worldwide 
(Brandt et al., 2013; Gauthier et al., 2015; Pan et al., 2011). The suc-
cessional pathways, species composition, and carbon balance of boreal 
forested ecosystems are driven by natural and anthropogenic 
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disturbances from fires, harvests, wind events, insect outbreaks, and 
drought (Aakala et al., 2023; Wang et al., 2021; White et al., 2017). The 
increasing severity, extent, and frequency of these disturbances, along 
with changes in forest productivity due to rising temperatures, 
increasing CO2, and shifts in water dynamics, present a significant threat 
to the ability of boreal forests to effectively mitigate climate change and 
sustain timber supply (Brecka et al., 2018; McDowell et al., 2020; Seidl 
et al., 2017). 

The contiguous boreal forests of Canada account for almost 30% of 
the country’s land area (Brandt et al., 2013). Black spruce (Picea mariana 
(Mill) B.S.P.) is the predominant tree species contributing to over 35% of 
the merchantable wood volume harvested in the provinces of Quebec 
and Ontario alone (MFFP, 2018b; MNRF, 2021). Although 
stand-replacing disturbances such as fire and harvest are major drivers 
of the succession and renewal of these black spruce stands, the influence 
of lower severity, non-stand replacing (NSR) disturbances is also sub-
stantial (Aakala et al., 2023; Harper et al., 2002). In particular, changes 
in water availability and rising temperatures have detrimental impacts 
on the growth and survival of black spruce stands, especially in the 
warmer regions of the boreal biome (Berner and Goetz, 2022; Chagnon 
et al., 2022; D’Orangeville et al., 2018; Marchand et al., 2019), which 
are experiencing more frequent water deficits that can lead to increased 
mortality rates (Peng et al., 2011; Sánchez-Pinillos et al., 2022). These 
black spruce forests are also experiencing eastern spruce budworm 
outbreaks (Choristoneura fumiferana Clem.), a defoliating insect pri-
marily targeting balsam fir (Abies balsamea (L.) Mill), that also signifi-
cantly impacts the growth of black spruce at epidemic levels (Blais, 
1957; Hennigar et al., 2008; Régnière et al., 2012; Sánchez-Pinillos 
et al., 2019) with damage often varying topographically. Higher eleva-
tions, for instance, are generally associated with a lower probability of 
defoliation by the spruce budworm, especially during the onset of the 
outbreaks (Bouchard and Auger, 2014; Magnussen et al., 2004). The 
interaction effects of defoliation and lack of water on the growth of black 
spruce stands is complex and remains largely unquantified (Canelles 
et al., 2021; Itter et al., 2019; Lacey and Dech, 2012), however it is 
recognised that drought conditions preceding spruce budworm out-
breaks increase the overall severity of the impact (Bouchard et al., 2018; 
De Grandpré et al., 2019; Jactel et al., 2012). Quantifying alterations in 
black spruce growth caused by the compound effects of drought and 
defoliation is therefore important to provide a more comprehensive 
picture of how these forests will respond to future climate. 

Remote sensing technologies provide wall-to-wall information on 
forest condition, allowing for a near-real time monitoring of distur-
bances over large geographical extents (Senf et al., 2017; Woodcock 
et al., 2020). With its open-access policy, high radiometric and geo-
metric qualities and moderate spatial resolution, imagery from the 
Landsat program of satellites is now widely used to detect and charac-
terise changes in forest condition (Banskota et al., 2014; Woodcock 
et al., 2008; Wulder et al., 2022). The impact of NSR disturbances such 
as insect defoliation and drought is typically more subtle to detect from 
these time series of spectral data when compared to stand-replacing 
disturbances such as fires or harvesting, as it typically does not result 
in a complete loss of the forest cover (Ahmed et al., 2017; Hermosilla 
et al., 2015b; White et al., 2017). Depending on the severity of the 
disturbance, stands can experience thinning and discoloration of the 
foliage, as well as alterations of stand structural attributes because of 
increased snags, broken treetops and dropped branches (Coops et al., 
2020). 

Approaches to detect NSR disturbances from satellite spectral data 
include direct comparisons of canopy reflectance properties before and 
after the event (e.g. Franklin et al., 2001; Olthof et al., 2004), as well as 
more refined spectral trajectory-based methods, which analyse the tra-
jectory of spectral values over time and identify the start and severity of 
a disturbance event from a deviation from expected spectral values (e.g. 
Hermosilla et al., 2015a; Kennedy et al., 2010; Mulverhill et al., 2023; 
Zhu and Woodcock, 2014). These later methods have successfully been 

applied in Canada and globally to map the severity of damage from 
defoliator insects and bark beetles (e.g. Coops et al., 2020; Dottavio and 
Williams, 1983; Rodman et al., 2021; Senf et al., 2015), and to charac-
terise the impact of drought events and changes in water availability on 
forest condition (e.g. Bell et al., 2018; Berner and Goetz, 2022; Vogel-
mann et al., 2016). While these studies have generated spatially explicit 
information on the timing, severity, persistence, and extent of NSR 
disturbances, less emphasis has been placed on assessing the impact on 
forest growth. 

Dendrochronology, the science of dating and studying past events 
and environmental changes through the analysis of tree rings (Guibal 
and Guiot, 2021), allows an accurate reconstruction of past tree growth 
at an annual or even sub-annual scale and in turn precise assessments of 
the impact of NSR disturbances such as drought and insect defoliation 
from field based, rather than satellite observations (Altman, 2020; 
Biondi, 1999; Nehrbass-Ahles et al., 2014). Dendrochronological 
methods have been used to reconstruct the history of eastern spruce 
budworm outbreaks (e.g., Boulanger and Arseneault, 2004; Itter et al., 
2019; Lacey and Dech, 2012) and drought events (e.g., Aakala et al., 
2023; Archambault and Bergeron, 1992; Girardin et al., 2008) in boreal 
forests as well as to quantify the losses in carbon stocks attributable to 
NSR disturbances (Klesse et al., 2016). Recent advances have seen the 
development of specific tree-ring data collection and analysis protocols 
that allow for reliable stand-level reconstructions of past growth trends 
(Babst et al., 2018; Klesse et al., 2016; Nehrbass-Ahles et al., 2014). 

Several studies have built links between tree-ring chronologies and 
satellite spectral trajectories (Babst et al., 2010; Bonney and He, 2021; 
Decuyper et al., 2020; Lopatin et al., 2006; Vicente-Serrano et al., 2016) 
with promising results observed when assessing trends in, for example, 
growth and forest primary productivity (Babst et al., 2018; 
Nehrbass-Ahles et al., 2014). Although the existence of relationships 
between forest growth and satellite data has been confirmed, the po-
tential to employ Landsat time series for quantifying changes in growth 
rates attributable to NSR disturbances remains relatively unexplored. 
Yet, such information is critical to forest management decision-making, 
since severe growth declines may be early warning signals of mortality 
(Anderegg et al., 2019; Kéfi et al., 2013; Mamet et al., 2015). Accurate 
and spatially explicit information regarding the impact of NSR distur-
bances on forest growth could be employed, for instance, to plan salvage 
operations to harvest dying trees, or to implement targeted silvicultural 
interventions to enhance the resistance and resilience of vulnerable 
stands (Achim et al., 2022; Moreau et al., 2022; Wotherspoon et al., 
2022b). 

Our objective was to exploit Landsat time series reflectance infor-
mation in combination with tree-ring observations to produce spatially 
explicit estimates of growth declines due to NSR disturbances at a 30 m 
resolution across black spruce dominated stands in two managed boreal 
forests in Canada. In addition, we aimed to identify the most significant 
Landsat-derived vegetations indices and examined if the inclusion of 
topographic information derived from airborne laser scanning (ALS) 
data improved the performance of the approach compared to models 
based exclusively on satellite data. To limit the effect of variations in 
response to NSR disturbances among species, as well as to limit the effect 
of stand development stages on growth rates, we focused on fire-origin, 
black spruce dominated (i.e., > 75% of the basal area) stands, currently 
at the end of the stem exclusion stage or at the early understory onset of 
the reinitiation stage. Trees in these stands grew as a single cohort 
following severe wildfires that decimated the previous stand. Depending 
on site productivity, the transition from the stem exclusion to the un-
derstory reinitiation stages in black spruce stands occurs between 
approximately 50–120 years after stand establishment (Harper et al., 
2005; Lieffers et al., 2003). Targeting stands at this stage of development 
enabled us to avoid those stands where the presence of canopy gaps 
caused by the mortality of dominant trees, which would lead to the 
growth of a second cohort of trees and the development of an 
uneven-aged structure (Harper et al., 2005; Oliver and Larson, 1996). 
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The complex competition dynamics within uneven-aged stands might 
have increased the variability of responses to disturbances among trees 
due to age, and could have increased the bias due to sampling only the 
surviving trees (Nehrbass-Ahles et al., 2014; Primicia et al. 2015; 
Šamonil et al. 2015). 

2. Material and methods 

2.1. Study sites 

The study was conducted in two forest management areas in the 
Canadian boreal forest. The first study site, Lac Saint-Jean (LSJ), is 
located north of Lac Saint-Jean in the province of Quebec (Fig. 1). The 
site covers 867,107 ha encompassing two bioclimatic domains: the 
balsam fir-paper birch domain to the south, and the spruce-feathermoss 
domain to the north (Saucier et al., 2010). Based on historical means for 
the 1981–2010 period, the average annual temperature is 0.8◦C and the 
region receives an annual average precipitation of 928 mm (Wother-
spoon et al., 2022a). Climate projections made using an ensemble of 
thirteen global circulation models and averaged under four shared so-
cioeconomic pathway (i.e. SSPs 1–4) scenarios (Mahony et al., 2022) 
indicate that maximum daily temperatures are expected to increase by 
3.0–4.2◦C in this region by 2050, while summer maximum temperature 
could increase by 2.1–2.9◦C. Annual precipitation is projected to in-
crease by an average of 18% in the same period, but the increase will be 
considerably smaller in the southern portion of the study site (Wother-
spoon et al., 2022a). Forest management activities include both partial 

harvest and clearcutting, as well as pre-commercial thinning and 
restocking when natural regeneration is not sufficient. The dominant 
tree species are black spruce, balsam fir, jack pine (Pinus banksiana 
Lamb), tamarack (Larix laricina (Du Roi) K. Koch), paper birch (Betula 
papyrifera Marshall) and trembling aspen (Populus tremuloides Michx.). 

The second study site is the Romeo Malette Forest management unit 
(RMF), in the province of Ontario (Fig. 1). It covers 586,607 ha within 
the Lake Abitibi ecoregion in the Ontario Shield ecozone (Wester et al., 
2018). The dominant tree species include black spruce, jack pine, white 
spruce (Picea glauca (Moench) Voss), aspen, and paper birch. The forest 
also has components of balsam fir, cedar (Thuja occidentalis L.), tama-
rack, and white and red pines (Pinus strobus L. and Pinus resinosa Soi ex. 
Aiton). Based on the historical mean for the 1981–2010 period, the 
mean annual temperature in the RMF site is 1.8◦C and it receives 
773 mm of precipitation annually, on average (Wotherspoon et al., 
2022a). According to projections made using an ensemble of thirteen 
global circulation models averaged under four shared socioeconomic 
pathways (i.e. SSPs 1–4) scenarios (Mahony et al., 2022), both the 
minimum and maximum temperatures are expected to increase by 2.9◦C 
on average in this region by 2050. The risk of drought and vulnerability 
to forest pests could increase due to warmer summers with no change in 
precipitation and warmer winters with reduced snowfall (Wotherspoon 
et al., 2022a). 

2.1.1. Status of non-stand replacing disturbances at the study sites 
Biotic disturbances in conifer-dominated stands at both study sites 

are mainly attributable to the eastern spruce budworm (Urquizo et al., 

Fig. 1. Location of the Lac Saint-Jean (A, 28 plots) and the Romeo Malette Forest (B, 24 plots) study sites and the corresponding ground plot locations.  
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2000). Although the insect is endemic, outbreaks typically follow a 
cyclical pattern with a recurrence of 30–40 years (Boulanger and 
Arseneault, 2004; Régnière et al., 2012). Other insects, such as the 
Swaine jack pine sawfly (Neodiprion swainei Midd.), the yellowheaded 
spruce sawfly (Pikonema alaskensis (Rohwer)), and the forest tent 
caterpillar (Malacosoma disstria Hübner) have also caused significant 
damage in the past (MNRF, 2023b, MFFP, 2018). Wildfires are also 
major drivers of forest dynamics and succession with 27,500 ha burnt in 
2005 alone, and 176,434 burned from 2005 to 2014 at the LSJ site. The 
most severe fire event recorded within the RMF site occurred in 2012, 
when around 40,000 ha were burned (MNRF, 2023a). 

Data on the status of NSR disturbances within the two study sites was 
gathered from the available disturbance layers produced by the Minis-
tère des Ressources Naturelles et des Forêts of Quebec (MRNF) and the 
Ontario Ministry of Natural Resources and Forestry (MNRF), as well as 
daily climate data extracted over the location of the ground plots to 
characterise drought conditions. Both sites were under an active spruce 
budworm outbreak at the time of sampling in 2021 (Fig. 2), as deter-
mined from aerial surveys. Such surveys are conducted on an annual 
basis by the MRNF and MNRF, providing georeferenced layers publicly 
available online (MNRF, 2023b; MRNF, 2023). At the LSJ site, initial 
detection of defoliation from spruce budworm occurred in 2006 but 
damage was minor until the 2011–2016 period when defoliated areas 
increased sharply, culminating in 2020 with a total of 575,476 ha 
affected within the study site, before decreasing slightly in the two 
following years (Fig. 2A; MRNF, 2023). The current budworm outbreak 
in the RMF site started in 2015 with areas of defoliation increasing 
sharply and continuously from 2019, with 180,184 ha affected as of 
2021 (Fig. 2B; MNRF, 2023b). 

To investigate how the occurrence of drought conditions evolved in 
the last decades, we examined values of the standardised precipitation 
evapotranspiration index (SPEI; Vicente-Serrano et al., 2010), a multi-
scalar index based on temperature, and precipitation, which also 
consider the estimated cumulative water balance (Fig. 3). This index is 
frequently used in conjunction with tree-ring data to investigate the 

influence of drought on forest growth (DeSoto et al., 2020; Gazol et al., 
2018; Wotherspoon et al., 2022b). Daily climate records from 1950 to 
2021 at the location of each plot were imputed from the data of the six 
most representative surrounding weather stations using BioSim (Version 
11; Régnière et al., 2017). We calculated SPEI values for the entire 
growing season according to the definition of McKenney et al., (2006), 
which is from May to October, for both of our study sites when using 
average daily temperature. Site-level SPEI time series were built by 
averaging the monthly index values calculated at the location of the 
ground plots established in each study site. This analysis revealed that 
the driest years over the period 1950–2021, defined as growing seasons 
during which the SPEI values were below the 5th percentile of historical 
values for this period, occurred in 1953, 2005, 2007, and 2010 at the LSJ 
site (Fig. 3A), and in 1955, 1997, 2005, and 2011 at the RMF site 
(Fig. 3B). 

2.2. Plot establishment and data collection 

We used data from the Quebec and Ontario provincial forest resource 
inventories (FRI; Bilyk et al., 2021; MRNF, 2022), high-resolution aerial 
images, and forest attribute layers derived from ALS data acquisitions 
conducted over the two study sites to identify potential forest stands for 
the field sampling. At the LSJ site, ALS data were acquired from 2018 to 
2020 (during the growing season, leaf-on), using a full-waveform 
airborne laser scanner at an average density of 2.5 pts/m2. The 
area-based approach, wherein ALS data and co-located field plots are 
used to predict a suite of forest inventory attributes (Næsset, 2002; 
White et al., 2013a), was applied at the LSJ site (Riopel et al., 2022). At 
the RMF site, ALS data were acquired in the summer of 2018, using a 
single photon laser scanner, with an average point density of 40.8 
pts/m2. The area-based approach was also applied at the RMF to predict 
a suite of forest inventory attributes (Queinnec et al., 2022). We used the 
provincial forest inventories and ALS-derived forest attributes to select 
mid-seral, black spruce dominated stands (≥75% BA) that originated 
from a fire and in which no harvest treatments have been carried out. 

Fig. 2. Cumulative years of defoliation as of 2021 in the LSJ (A) and RMF (B) sites during the most recent eastern spruce budworm outbreak (MNRF, 2023a; 
MRNF, 2023). 
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Stands were then filtered using a minimum (80 m) and maximum 
(800 m) distance threshold from the main roads. All candidate plots (50 
plots in LSJ site, 60 plots in RMF site) were then visited in the field, to 
confirm the even-aged structure and the wildfire origin of the stands, 
using the presence of a charcoal layer under the organic layer of the soil 
(Ohlson et al., 2009). This resulted in the exclusion of 22 plots in the LSJ 
site and 36 in the RMF site, either because the fire origin could not be 
confirmed, or because of the uneven age structure of the stands. A total 
of 52 plots (28 in the LSJ site and 24 in the RMF site) were measured 
during the summer of 2021 (Fig. 4). 

We established 11.28 m radius (400 m2) circular plots in which, for 
all living trees, the species and DBH were recorded. In addition to 
measurements of individual trees, the thickness of the humus layer and 
the coverage of herbaceous plants and mosses were measured. The 
location of each plot centre was recorded using a Trimble Geo7X pre-
cision GNSS connected to an external antenna, providing an estimated 
accuracy within 1 m for plot centre position after differential correction. 

In each plot, 32 black spruce trees were randomly selected to be 
cored, as this approach best captures the population growth signal than 
sampling focussed on dominant/co-dominant trees (Babst et al., 2018; 
Biondi, 1999; Klesse et al., 2016; Nehrbass-Ahles et al., 2014). For each 
tree, the crown position and live crown ratio were recorded, and 
increment cores were collected at 1 m above the ground on the south 
side on 26 of the selected trees, while the remaining six trees were felled. 
A disc was collected on felled trees at a height of 1 m along the stem, 
which was added to the increment core samples for the measurement of 
past growth. A second disc was collected at the base of the stem to es-
timate the age of the stand. 

2.3. Dendrochronological analysis 

Increment cores were air-dried, and glued to wooden blocks, before 
being sanded, while discs were air dried and sanded. Ring widths were 
measured using a Velmex micrometer (± 0.002 mm) on all increment 
cores and discs. The dating accuracy was verified using the COFECHA 
program (Holmes, 1983). Time series of ring widths that did not 
cross-date with most other series in a plot were eliminated, resulting in 
between 24 and 32 usable ring series per plot measured from 1538 cores. 
Rejected samples were essentially cores damaged during the transport or 
that were presenting very narrow rings due to defoliation, creating un-
certainty regarding the quality of the measurements. 

The direct use of ring width measurements does not accurately 
reflect growth trends as it does not account for changes in trunk diam-
eter over the lifespan of a tree (Biondi and Qeadan, 2008; Sullivan et al., 
2016). To address this limitation, ring width measurements were con-
verted into basal area increments (BAI), in mm2yr− 1, which better re-
flects the evolution of growth rates and biomass accumulation over time 
(Babst et al., 2014; Biondi and Qeadan, 2008; Sullivan et al., 2016). 
Converting ring widths to BAI does not remove developmental effects on 
growth, but was appropriate for the current study conducted on 
even-aged stands, considering that BAI remains relatively stable during 
the mature phase of growth (Chen et al., 2002; Harper et al., 2005). A 
decline in BAI during this period can be considered a reliable indicator 
of an actual growth decline (Peñuelas et al., 2008). 

BAI was calculated from the bark to the pith, using DBH values 
measured in the field, from which the thickness of the bark, determined 
as a function of the DBH of each tree, was subtracted (Perron, 1985). For 
each plot, we then used the individual BAI annual data from all usable 
cores to create a plot-level BAI time series, calculated as the median of 

Fig. 3. Time series of the standardised precipitation evapotranspiration index (SPEI) at the LSJ (A) and RMF (B) sites. Shaded areas represent the driest years, defined 
as growing seasons during which the value of the SPEI was below the 5th percentile of historical values from 1950 to 2021. 
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the individual annual BAI. As high proportions of the stems were cored 
in each plot (35.1% on average), and sample trees were randomly 
selected among all trees of the plot, these median time series were 
deemed representative of the annual BAI of the median tree in each plot 
(Babst et al., 2018; Nehrbass-Ahles et al., 2014). The age of the stands 
was determined using the median of the number of rings counted on the 
discs collected at the stump of six trees in each plot. 

2.4. Quantification of the decline in basal area increment 

To quantify the growth decline sustained at each plot due to NSR 
disturbances, years 2011–2021 were used as the decline period and 
years 2000–2010 were used as a reference period of prior growth when 
BAI was relatively stable in all plots. The duration of the selected periods 
was determined considering the timing of the observed growth declines, 
and because it was sufficiently long to limit the influence of isolated low 
or high growth years, but short enough to avoid the influence of stand 
development and competition (Altman, 2020; D’Orangeville et al., 
2018). This interval also corresponds approximately to the update in-
terval of traditional forest inventories in this region (Coops et al., 2023; 
Gillis et al., 2005). 

For each plot, we then calculated the median of the annual tree-level 
BAI, hereafter referred to as median growth rate, during both the 

reference and decline periods. The magnitude of the change in median 
growth rate between the two periods (hereafter referred to as decrease in 
growth rate) was calculated using Eq. 1. The percentage growth change 
between preceding and subsequent 11-year median BAI (hereafter 
referred to as growth decline), was calculated using Eq. 2, adapted from 
Nowacki and Abrams (1997). 

dBAI = BAIreference − BAIdecline (1)  

dBAIr = 100⋅
BAIreference − BAIdecline

BAIreference
(2)  

Where dBAI is the absolute difference between the median plot-level BAI 
in mm2yr− 1 over the 11-year reference (BAIreference) and decline (BAI-
decline) periods, and dBAIr is the percentage change in BAI between the 
two consecutive periods. 

Severe declines in annual BAI during the mature phase of growth are 
likely attributable to stressors, disturbances or senescence (LeBlanc, 
1990; Peñuelas et al., 2008). In this study, we identified a threshold for 
severe growth declines by examining the historical range of variation in 
the BAI time series, considering consecutive 11-year periods. Various 
thresholds, either in standard deviations or percentiles, has been pro-
posed to detect either growth releases or growth declines (e.g. Brienen 

Fig. 4. Illustration of typical ground plots in the two study sites at LSJ and RMF, representing stands of low (A), medium (B), and high (C) basal area at each site.  
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et al., 2010; Moreau et al., 2020; Trotsiuk et al., 2018) as well as growth 
extremes (e.g. Gazol et al. 2015; Romagnoli et al., 2018). In this study, a 
growth decline was considered severe if it exceeded the 95th percentile 
of all relative changes in median BAI between consecutive 11-year pe-
riods from 1950 to 2021. The 95th percentile is in the higher range of the 
thresholds reported in the abovementioned studies and was deemed 
appropriate considering the extent of the analysed period and the need 
to preserve enough observations in each category for the subsequent 
statistical analysis. For the determination of this threshold, the relative 
change in BAI was preferred to the absolute change in BAI to account for 
the initial variability in growth rates observed between the time series. 
The determination of the threshold was done by first calculating the 
periodic median BAI for each plot from 1950 to 2021 in subsequent, 
non-overlapping moving windows of the same length of the reference 
and decline periods described above (i.e. 11 years). The relative change 
in median BAI between all consecutive periods (i.e., between the first 11 
years starting in 1950 and the subsequent 11 years of growth) was then 
calculated. The moving windows were displaced in yearly steps until the 
last complete period, which corresponded to that used for dBAI and 
dBAIr calculations (Eqs. 1 and 2). The 95th percentile of all historical 
relative BAI changes corresponded to a change of 23.7% in BAI between 
two consecutive periods. Plots for which the decrease in median growth 
rate between the reference and decline periods exceeded this threshold 
were identified as having sustained a severe growth decline. 

2.5. Landsat composites, vegetation indices and derived predictor 
variables 

Annual, gap-free, best-available pixel composites (BAP; White et al., 
2014) were generated over each study site from 2000 to 2021. Inte-
grating surface reflectance images from Landsat 5 Thematic Mapper 
(TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 
8 Operational Land Imager (OLI) sensors, these composites are created 
by selecting the optimal pixel for each year based on the proximity to a 
target date, distance to clouds and cloud shadows, atmospheric quality, 
and sensor-specific characteristics. Data gaps were subsequently infilled 
in cases where a valid annual observation was lacking for a given pixel 
(Hermosilla et al., 2015a; White et al., 2014). Composites were exclu-
sively composed of Landsat scenes with less than 70% cloud cover, 
captured between July 1st and August 30th of each year. 

Time series of vegetation indices (VI, Table 1) spanning the 
2000–2021 period were calculated from the annual BAP composites. 
Insect defoliation, drought and other sources of stress will affect foliage 
coloration, density, or abundance, resulting in changes in the spectral 
reflectance of the canopy (Asner,1998; Coops,2015; Torresan et al., 
2021). The Normalised Difference Vegetation Index (NDVI; Tucker, 
1979) is a normalised difference of the near-infrared (NIR) and red 
Landsat bands. Photosynthetically active vegetation exhibits a high 
reflectance in the near-infrared region of the spectrum, but a very low 
reflectance in the red region of the spectrum. NDVI is a well-established 
indicator of the amount of photosynthetically active vegetation and has 
been used to monitor forest growth and mortality at both large and local 
scales in a variety of forest ecosystems (Beck and Goetz, 2011; Foster 

et al. 2022; Girardin et al., 2016). The Normalised Burn Ratio (NBR; Key 
and Benson, 2006) was derived from the near-infrared (NIR) and second 
shortwave-infrared (SWIR2) Landsat bands. Photosynthetically active 
vegetation shows a considerably lower reflectance in the shortwave 
infrared regions than in the NIR region compared to non-photosynthetic 
or dry vegetation (Asner, 1998). Changes in NBR are associated to 
changes in the amount of photosynthetically active vegetation, which 
have made this index useful in detecting and assessing the severity of 
both stand-replacing and non-stand replacing disturbances such as 
partial harvests and insect defoliation (Kennedy et al., 2010; 
Morin-Bernard et al., 2023a; 2023b). The Wetness component of the 
Tasseled Cap transformation (TCW; Crist,1985) incorporates informa-
tion from six Landsat bands through an orthogonal transformation. TCW 
has been successfully employed to estimate forest structural attributes, 
detect declining stands, and estimate forest growth rate in the absence of 
disturbances (Czerwinski et al., 2014; Matasci et al., 2018, 
Morin-Bernard et al., 2023a; 2023b). 

The annual values of each vegetation index were subsequently 
averaged over a 3 ×3 pixel window centred on the location of each of the 
52 sample plots. Two categories of predictors were derived from the VI 
time series i.e., 1) the slope of the VI values during the 2000–2021 
period, hereafter referred to as the VI slope, and 2) the difference in the 
median VI values (dVI) between the reference and decline periods 
(2000–2010 and 2011–2021, respectively). The VI slopes were deter-
mined using the Theil-Sen slope estimator (Sen, 1968; Theil, 1950), 
which limits the influence of outliers and noise, commonly encountered 
in satellite imagery time series. 

2.6. Topographic predictor variables 

The severity of NSR disturbance can be spatially heterogeneous and 
may be influenced by site characteristics and topography (Bouchard and 
Auger, 2014; Isaacs et al., 2014; Mamet et al., 2015). To evaluate the 
influence of site characteristics on the severity of NSR disturbances, we 
obtained surface topography information from ALS data, providing 
detailed wall-to-wall information on surface topography (Bufton et al., 
1991; Liu, 2008; Mallet and Bretar, 2009). We used the normalised point 
cloud data from the ALS acquisitions conducted at each study sites to 
generate a digital elevation model at a 5-m resolution, from which the 
slope and aspect were calculated using the terra package (Hijmans et al., 
2022) in the R programming environment. We performed sine and 
cosine transformations of aspect to derive two predictor variables: 
eastness and northness. We also calculated the topographic wetness 
index (TWI; Beven and Kirkby, 1979) at a 5-m resolution using the R 
implementation of the SAGA geographic information system (Conrad 
et al., 2015). The values of the topographic variables were then 
extracted and averaged over the 400 m2 footprint of the ground plots. 

2.7. Statistical modelling process 

We implemented a two-stage modelling approach in which we first 
used a logistic regression model to classify the plots as either having a 
severe growth decline or not based on the dendrochronological sum-
maries at the 52 plots. We then used ordinary least square regression 
(OLS) to predict the magnitude of the growth decline as an absolute 
change in BAI at the 29 plots that had sustained a severe growth decline. 
To develop the models at each stage, we relied on a model-selection 
procedure based on the Akaike information Criterion corrected for 
small samples (AICc), since it allows a balance between goodness of fit 
and model complexity, favouring the transferability of the model 
(Ranganathan et al., 2017). Model selection was implemented using the 
AICcmodavg R package (Mazerolle, 2020). 

We used an identical model-selection procedure for both the logistic 
and the OLS regression models. To account for the presence of multi-
collinearity among predictors, we only tested combinations of predictors 
for which the variance inflation factor (VIF; Zuur et al., 2010) was less 

Table 1 
Vegetation indices and related equations calculated from Landsat composite 
time series.  

Vegetation index Equation Reference 

Normalised Difference 
Vegetation Index 
(NDVI) 

= (NIR – Red) / (NIR + Red) (Tucker, 1979) 

Normalised Burn Ratio 
(NBR) 

= (NIR – SWIR2) / (NIR + SWIR2) (Key and 
Benson, 2006a) 

Tasseled Cap Wetness 
(TCW) 

= 0.0315 * Blue + 0.2021 * Green +
0.3102 * Red + 0.1594 * NIR – 
0.6806 * SWIR1 – 0.6109 * SWIR2 

(Crist, 1985)  
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than 2. At each step of the model-selection process, intercept-only 
models were also included among the candidates to ensure the most 
parsimonious model performed better than a simple average. For each 
candidate logistic regression model, the existence of a linear relationship 
between continuous predictor variables and the logit of the outcome was 
verified visually, and the absence of highly influential outliers was 
confirmed. Graphical methods, as well as the Shapiro-Wilk normality 
test and Verbyla’s test for heteroscedasticity (Shapiro and Wilk, 1965; 
Verbyla, 1993), were used to verify assumptions for the OLS regression 
candidate models. 

In a first step of the model selection process, we selected the best 
combination of Landsat-derived predictors from a set of candidates 
(Table 2). We then separately identified the best set of ALS-derived 
topographic predictor variables from a list of candidates (Table 2). We 
retained the set of variables with the lowest AICc value in both cate-
gories (i.e. Landsat-derived variables and ALS-derived topographic 
variables), for the development of comprehensive candidate models. In 
each category of predictors, models with small differences in AICc values 
(i.e., ΔAICc < 2) compared to the best-ranked candidate were also 
retained. Comprehensive candidate models were then generated by 
combining the best sets of predictors from the two categories, ensuring 
VIF values were < 2. To assess whether the addition of topographic 
variables resulted in decreased AICc values compared to a model based 
exclusively on Landsat data, the best-performing candidate model con-
taining only Landsat-derived predictors was also included. Both the final 
logistic and OLS models were selected from the set of comprehensive 
candidate models, with selection determined by the model with the 
lowest AICc value. The sample size was insufficient to split the data into 
training and testing dataset. Model accuracy was thus assessed using k- 
fold cross-validation as well as by applying the trained model on the 
entire dataset. Considering our limited sample size, we divided the 
dataset into five folds to ensure a minimal number of observations in the 
hold-out sample, which has been found to be critical in providing a 
reliable assessment of the predictive power of the model (e.g. Fassnacht 
et al., 2014). To account for a potential increase in bias and the vari-
ability of the estimates, the cross-validation process was repeated a 
hundred times (Kim, 2009; Rodriguez et al., 2009). The relative 
importance of the predictors included in the final logistic regression 
model was determined by calculating the drop contribution in the Tjur’s 
coefficient of determination (Tjur, 2009) for each variable. 

2.8. Application of the models to both study sites 

The logistic and OLS models, respectively predicting the probability 
of a severe growth decline, and the magnitude of the growth decline, 

were then sequentially applied to make predictions throughout both 
study sites. To identify the area of model application (i.e. black spruce 
dominated stands within the study sites) over which predictions of the 
probability of a severe growth decline would be generated, we used data 
from the Quebec and Ontario FRIs for species composition (Bilyk et al., 
2021; MRNF, 2022), and the abovementioned ALS-derived forest attri-
butes layers for stand structural attributes. We first used the FRI infor-
mation to select only softwood dominated stands where black spruce 
accounted for more than 70% of the basal area. Then, we applied an 
additional filtering to retain only areas where the values of canopy 
coverage, density, height, basal area, and mean quadratic DBH—as 
extracted from the ALS-derived forest attribute layers —were within the 
range of the same attributes measured over the plots used in model 
development, allowing a tolerance of ±5%. The OLS model was applied 
exclusively on areas where the probability of a severe growth decline 
predicted by the logistic regression model was ≥ 50%. To better un-
derstand how much the defoliation caused by the spruce budworm may 
have contributed to the observed growth declines, we conducted an 
additional analysis to determine if there was a significant difference in 
the cumulative number of years of defoliation during the current 
outbreak in areas where a severe growth decline was predicted 
compared to areas where a severe growth decline was not predicted. For 
our analysis, we extracted the cumulative number of years of defoliation 
from Fig. 2 over each 30 ×30 m cells on which logistic model predictions 
were generated. We then carried out an analysis of variance to look for 
significant differences in defoliation data between cells where the pre-
dicted probability of severe growth decline was ≥ 50% compared to 
areas where the predicted probability was < 50%. 

3. Results 

3.1. Compositional, structural attributes and age of the ground plots 

The forest structural attributes, year of origin, and species compo-
sition of the ground plots established as part of this study are presented 
in Table 3. Stand age varied between 76 and 114 years at the time of 
sampling in 2021, as determined from the discs collected at the base of 
the stems on six trees per plot. Fig. 4 shows typical representations of 
stands of low, medium, and high basal area encountered at the LSJ and 
RMF sites. 

3.2. Changes in basal area increment between the reference and decline 
periods 

Fig. 5 shows the mean BAI trends from 1950 to 2021 for each study 
site, calculated as the average of the tree-level annual BAI calculated at 
each plot. On average, BAI was higher at the LSJ site throughout the 
observation period until 2021, when values at both sites reached com-
parable values (Fig. 5). At the LSJ site (28 plots, 848 trees), the median 
growth rate during the reference period (period A in Fig. 6) ranged from 
124.3 to 321.7 mm2yr− 1 depending on the plot, with an average of 
219.16 mm2yr− 1. 

For plots located at the RMF site (24 plots, 690 trees), the median 
growth rate during the reference period had minimum, maximum, and 
average values of 108.0, 245.4 and 162.6 mm2yr− 1, respectively. The 
average relative growth declines between the reference and decline 
periods were 27.7% at the LSJ site and 29.9% at the RMF (Fig. 6). At the 
LSJ site, only one plot had a slightly positive change in BAI (+ 0.2%), 
while remaining plots showed decreases in BAI that reached 65.5% in 
the most affected plot. At the RMF site, the relative decrease in BAI 
between the two periods ranged from 2.2% to 52.4%. A total of 29 plots 
(thirteen at the LSJ site and sixteen at the RMF site) reached the 
threshold determined for severe growth declines (i.e. 23.7% decrease in 
BAI), corresponding to 55.8% of the plots included in the study. 

Table 2 
Candidate models including either Landsat-derived spectral or ALS-derived 
topographic variables tested in the logistic and OLS model selection proced-
ures. TCW is the Tasseled Cap Wetness, NBR is the Normalised Burn Ratio, NDVI 
is the Normalised Difference Vegetation Index and TWI is the Topographic 
Wetness Index. The letter d refers to the difference in the median vegetation 
index value between the reference (2000–2010) and decline (2011–2021) 
periods.  

Landsat-derived variables ALS-derived topographic variables 

Model ID Variables Model ID Variables  

1 TCW slope 1 Elevation  
2 TCW slope + dNDVI 2 Elevation + TWI  
3 NBR slope 3 Elevation + Slope  
4 NBR slope + dNDVI 4 Slope  
5 NDVI slope 5 TWI  
6 NDVI slope + dNBR 6 Slope + Northness + Eastness  
7 NDVI slope + dTCW 7 Northness + Eastness  
8 dNDVI 8 Intercept only  
9 dNBR   
10 dTCW   
11 Intercept only   
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3.3. Probability of a severe growth decline 

The inclusion of both Landsat-derived spectral and ALS-derived 
topographic variables in the logistic regression model increased model 
performance compared to the best-ranked models that included only 
predictors from a single category and resulted in lower AICc values. The 
best-performing comprehensive model included the slope of the TCW, as 

well as the elevation, and the TWI as predictors (Table 4). 
The selected model predicting the probability of severe growth 

decline (i.e. Model ID 7) achieved an accuracy of 80.8% when the model 
was applied to the full dataset (i.e., all 52 plots). The overall accuracy 
was slightly lower when calculated using repeated five-fold cross-vali-
dation, at 79.2%. The confusion matrix of model predictions on the 
entire dataset is presented in Table 5, and the individual effects of the 
predictors included in the model are shown in Fig. 7. The producer’s 
accuracy was 86.2% for plots with no severe decline and 73.9% for plots 
with severe decline. The values of user’s accuracy for these classes were 
80.7% and 66.7%, respectively. Errors of commission were 19.1% for 
plots with no severe decline and 19.4% for plots with severe decline. The 
corresponding errors of omission for these classes was 26.1% and 13.8%, 
respectively. Compared to the best-ranked model, which included only 
Landsat-derived variables (Model ID = 1), the inclusion of topographic 
variables increased the overall accuracy of the final model by 11.6% 
(80.8 vs 69.2) when measured on the full dataset and reduced the AICc 
by 6.61 (Table 4). The Tjur’s coefficient of determination of the final 
model was 0.47. Removing either the slope of the TCW, the elevation or 
the TWI from the predictor variables decreased the Tjur’s coefficient of 
determination by 0.14, 0.08 and 0.06, respectively. 

A steeper negative slope of the TCW was associated with an increased 
probability of a severe decline in BAI between the two periods (Fig. 7). 
Areas located at higher elevation had a lower probability of having 
sustained a severe decline in BAI, while higher values of the TWI were 
associated with a higher probability of a severe decline in BAI. 

3.3.1. Application of the logistic regression model to the study sites 
The probability of a severe growth decline was mapped wall-to-wall 

over the two study sites (at a 30 m spatial resolution), for forested areas 
where the structure and composition were similar to those of the stands 
used for model development (i.e., ≥ 70% of BA in black spruce, ALS- 
derived structural attributes within the range presented in Table 3 ±
5%). At the LSJ site, the model was applied on a total area of 32,841 ha 
(Fig. 8A), and 29,454 at the RMF site (Fig. 8B). 

Across the LSJ site, 7432 ha, or 22.6% of the area, had a probability 
of severe growth decline of 50% or more, with a median predicted 
probability of 8.8%. At the RMF site, 16,978 ha (57.6%) of the model 
application area had a probability of severe growth decline of 50% or 
more. Although the proportion of the area with a predicted probability 
of severe growth decline was considerably higher at the RMF site, the 

Table 3 
Summary of stand attributes for the ground plots established at the Lac Saint- 
Jean (LSJ) and Romeo Malette Forest (RMF) sites, calculated from the field 
measurements in 400 m2 circular plots.   

Lac Saint-Jean Romeo Malette Forest 

Year of origin     
Average  1930  1923 
Min  1913  1908 
Max  1946  1939 
Basal area (m2 ha− 1)     
Average  39.3  40.4 
Min  24.3  28.2 
Max  54.5  58.0 
Stem density (stem ha− 1)     
Average  2286  2872 
Min  1050  1225 
Max  3525  4275 
Quadratic Mean DBH (cm)     
Average  15.2  13.6 
Min  11.9  12.0 
Max  18.4  18.1 
Composition (% BA)     
Black spruce     
Average  96.9  97.1 
Min  77.2  79.6 
Max  100.0  100.0 
Jack Pine     
Average  5.9  4.6 
Min  1.3  0.4 
Max  22.8  12.7 
Balsam fir     
Average  1.1  1.2 
Min  0.1  0.1 
Max  4.4  5.8 
Deciduous     
Average  1.8  3.6 
Min  0.9  1.9 
Max  3.1  5.2  

Fig. 5. Site-level BAI chronologies from 1950 to 2021, built by averaging the BAI calculated at each plot. Shaded areas indicate the reference (A) and decline 
(B) periods. 
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proportion of the model application area where the predicted proba-
bility exceeded 90% was lower at the RMF than at the LSJ site, with 
proportions of 5.8 and 10.2%, respectively. 

Within the LSJ site, areas mapped as having experienced a severe 
growth decline (i.e., ≥ 50% probability according to predictions of the 
logistic regression model) had undergone defoliation for a significantly 
greater (p < 0.001) number of years than areas where the predicted 
probability of severe growth decline was < 50%, with average years of 
defoliation of 3.9 and 2.1, respectively. At the RMF site, the difference 

between the two categories of stands was also significant (p < 0.001), 
although the difference between the average number of years of defo-
liation in both areas of severe growth decline (0.7 years) and areas with 
no severe growth decline (0.4 years) was considerably smaller. 

3.4. Magnitude of the decrease in BAI 

The best-ranked model predicting the magnitude of decrease in BAI 
between the reference and decline periods included a single Landsat- 
derived predictor, which was the slope of the TCW index (Table 6). 
The addition of ALS-derived topographic variables did not increase 
model performance, although two candidate models including topo-
graphic variables had only slightly higher AICc values compared to the 
best-ranked model (Table 6). 

The best-ranked model had an R2 = 0.70 (p < 0.01, RMSE =
23.67 mm2yr− 1) after five-fold cross-validation repeated a hundred 
times and a R2 of 0.71 (p < 0.01, RMSE = 24.70 mm2yr− 1) when 
calculated on data from all plots. Fig. 9 shows the actual versus pre-
dicted decrease in growth rate for the twenty-nine plots that sustained a 
severe growth decline between the two sub-periods. 

A steeper TCW slope during the 2000–2021 period was associated 
with a larger decrease in BAI between the reference (2000–2010) and 
decline (2011–2021) periods (Fig. 10). 

3.4.1. Application of the OLS model to the study sites 
Predictions of the magnitude of the decrease in BAI between the 

reference and the decline periods were generated in all areas where the 
predicted probability of a severe growth decline reached 50% or more. 
At the LSJ site, the median predicted decrease in growth rate for these 
pixels was 95.3 mm2yr− 1, with a 5th percentile of 42.9 mm2yr− 1 and a 
95th percentile of 191.5 mm2yr− 1. The median predicted decrease in 
growth rate at the RMF site was lower at 64.4 mm2yr− 1, with 5th and 
95th percentiles of 36.7 and 101.7 mm2yr− 1, respectively. Fig. 11 shows 
the predicted growth decline in the areas of the two study sites where the 
highest probabilities of severe growth decline were found. Areas with 
the most severe declines appeared to be spatially clustered. Compared to 
the LSJ site, a larger area was predicted to have experienced a severe 

Fig. 6. Median BAI growth rate of the plots located at the LSJ and RMF sites during the reference (2000–2010) and the decline (2011–2021) periods.  

Table 4 
Ranking of the candidate logistic regression models for the prediction of the 
occurrence of a severe growth decline. AICc is the Akaike Information Criteria, 
corrected for small sample sizes, with delta AICc (ΔAICc), relative model like-
lihood (Mk), and AICc weight (Wti).  

Model 
ID 

Model name AICc ΔAICc Mk Wti  

7 TCW slope + Elevation + TWI  51.82  0.00  1.00  0.35  
5 TCW slope + Elevation + Slope  52.80  0.98  0.61  0.21  
3 TCW slope + Elevation  53.02  1.19  0.55  0.19  
8 TCW slope + dNDVI + Elevation +

TWI  
54.27  2.45  0.29  0.10  

6 TCW slope + dNDVI + Elevation +
Slope  

55.25  3.43  0.18  0.06  

4 TCW slope + dNDVI + Elevation  55.36  3.54  0.17  0.06  
1 TCW slope  58.43  6.61  0.04  0.01  
2 TCW slope + dNDVI  60.14  8.32  0.02  0.01  
9 Intercept only  73.47  21.65  0.00  0.00  

Table 5 
Confusion matrix for the predictions of the occurrence of severe growth decline 
using the final logistic regression model (Model ID 7) applied to the 52 plots.   

Observed 

Predicted No severe decline Severe decline 
No severe decline 17 4 
Severe decline 6 25  
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growth decline in the RMF site, but the magnitude of the decline was 
generally lower in the latter at the RMF site. 

4. Discussion 

Whereas significant progress has been made towards detecting and 
assessing the severity as well as the levels of mortality attributable to 
NSR disturbances (Coops et al., 2020; Morin-Bernard et al., 2023a; 
2023b; Mulverhill et al., 2023; Senf et al., 2015), our study focused on 

signs of growth decline, which may be indicators of imminent mortality 
(Anderegg et al., 2019; Kéfi et al., 2013; Mamet et al., 2015). Our results 
showed that a substantial growth decline occurred in certain areas of 
both study sites over the 2011–2021 period. Although the results pre-
sented in this study do not allow us to quantify the relative impact of 
defoliation and drought on the observed growth declines, the results 
provide valuable information to forest managers who need spatially 
explicit information on the current state of forests in order to plan 
appropriate management interventions. 

4.1. Integration of landsat time series and tree-ring data 

The predictive ability of the models developed in this study and the 
correlations between the BAI declines and the selected predictors vari-
ables confirm that Landsat time series can be utilised to quantify growth 
declines in black spruce stands due to NSR disturbances, thus fulfilling 
the main objective of this study. While previous studies focused on the 
characterisation of the temporal connection between tree-rings and 
Landsat time series data and on assessing changes in growth trends (e.g. 
Babst et al., 2010; Bonney and He, 2021; Decuyper et al., 2020; Lopatin 
et al., 2006; Vicente-Serrano et al., 2016), our study exploits the cor-
relations between these sources of data to generate spatially explicit 
predictions of changes in growth rates in a measurement unit (i.e. BAI) 

Fig. 7. Model predictions and unconditional 95% confidence intervals for the variables included in the best-ranked model predicting the probability of a severe 
growth decline between 2000 and 2010 and 2011–2021. 

Fig. 8. Predicted probability of severe growth decline between the reference (2000–2010) and decline (2011–2021) periods at the LSJ (A) and RMF (B) sites. For 
visualization purposes, the 30 m pixels were aggregated into 200 m pixels showing the average probability value. 

Table 6 
Ranking of the candidate OLS regression models for the prediction of the 
magnitude of the growth decline. AICc is the Akaike Information Criteria, cor-
rected for small sample sizes, with delta AICc (ΔAICc), model likelihood (Mk), 
and AICc weight (Wti).  

Model ID Model name AICc ΔAICc Mk Wti  

1 TCW slope  272.77  0.00  1.00  0.24  
3 TCW slope + Slope  272.93  0.16  0.92  0.22  
5 TCW slope + TWI  272.95  0.18  0.91  0.22  
2 TCW slope + dNDVI  273.65  0.88  0.64  0.15  
6 TCW slope + dNDVI + TWI  274.67  1.90  0.39  0.09  
4 TCW slope + dNDVI + Slope  275.11  2.34  0.31  0.07  
7 Intercept only  306.68  33.91  0.00  0.00  
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that is relevant for forest management and silvicultural 
decision-making. In a previous study, Morin-Bernard et al., (2023a); 
(2023b) used Landsat time series to predict the annual net basal area 
growth of undisturbed coniferous stands, based on data from permanent 
sample plots. One limitation of using permanent sample plot data for 
growth assessment is the limited temporal resolution of these datasets, 
with field measurements typically conducted every 5 or 10 years (Coops 
et al., 2023; Gillis et al., 2005). The annual resolution of tree-ring data 
allows for targeting of specific periods corresponding to disturbance 
events or adverse climatic conditions. The considerable number of 
increment cores collected as part of the provincial and national in-
ventory programs, as well as datasets available from the International 
Tree-Ring Data Bank (Grissino-Mayer and Fritts, 1997; Zhao et al., 2019) 
and from the Canadian Tree Ring Database (CFS-TRenD; Girardin et al. 
2021) constitute precious and relatively untapped sources of data that 
could be employed to apply a similar approach across a wide variety of 

forest types in Canada and around the world. 
The quality of tree ring data in terms of sampling and stand-

ardisation, however, remains a challenge. Dendrochronological anal-
ysis, traditionally used to reconstruct past climate, usually involves the 
sampling of dominant trees only, because they show similar responses to 
climate (Babst et al., 2018; Biondi, 1999; Nehrbass-Ahles et al., 2014). 
This causes an overestimation bias in estimates of forest growth at the 
stand level, since the growth of intermediate and supressed trees is not 
considered (Babst et al., 2014; Klesse et al., 2016; Nehrbass-Ahles et al., 
2014). The number of cores collected at each site can also be insufficient 
to capture the local variability in growth rates and responses to distur-
bances (Nehrbass-Ahles et al., 2014). Finally, some of these tree ring 
datasets do not include the raw ring-width measurements, but rather a 
standardised ring-width index, obtained after applying some form of 
detrending to the tree-ring data (Biondi and Qeadan, 2008; Sullivan 
et al. 2016). Although this standardisation removes low-frequency sig-
nals related to variations in stem size, cambial age, and development 
stages (Biondi and Qeadan, 2008; Guibal and Guiot, 2021), it prevents 
the calculation of an actual growth rate and the comparison of growth 
rates at different times (Klesse et al., 2016; Sullivan et al., 2016). Con-
verting the tree-ring widths to BAI, as realised in the current study 
presented herein, is an appropriate approach to minimize bias when 
investigating trends in growth or carbon assimilation over time (Babst 
et al., 2018; Klesse et al., 2016; Nehrbass-Ahles et al., 2014). 

4.2. Predictor variables included in the final models 

The final logistic regression model used herein to predict the prob-
ability of severe growth decline comprises both Landsat-derived pre-
dictors associated with the trend in the canopy spectral reflectance of the 
stands, as well as ALS-derived topographic variables, whereas the final 
OLS regression model used to predict the magnitude of the decrease in 
BAI includes only Landsat-derived predictors. 

The Theil-Sen slope of the TCW was the most important predictor in 
both the logistic and OLS regression models, confirming that the 
investigated NSR disturbances and the associated decline in growth has 
an impact on the spectral reflectance properties of the canopy. Previous 
work has shown the utility of the TCW to measure the annual net growth 
rate of coniferous stands in one of the sites used in the current study 
(Morin-Bernard et al. in press). Similarly, Czerwinski et al. (2014) used 
the Theil-Sen slope of the TCW to identify declining stands in a Canadian 
mixedwood forest. Other authors have also observed that TCW is among 
the most important predictors of canopy coverage and forest biomass 
(Matasci et al., 2018; Zald et al., 2016). The capacity of the TCW index to 
better capture changes in growth than the other tested indices appears to 
be linked to the specific weight given to each Landsat band in the TCW 
calculation. The general spectral response to a reduction in foliage 
abundance or density consecutively to a NSR disturbance involves a 
decrease in the NIR portion of the electromagnetic spectrum and an 
increase in the visible and SWIR wavelengths (Franklin et al., 2001; 
Healey et al., 2006). The strong emphasis of the TCW coefficients on the 
SWIR bands would therefore result in lower TCW values in response to 
reductions in canopy. In contrast, NDVI and other greenness-based 
indices, which are more sensitive to changes in the visible and NIR 
wavelengths, relate more notably to the spectral reflectance properties 
of chlorophyll (Asner, 1998; Tucker, 1979). Such indices easily become 
saturated in highly vegetated environments and are more sensitive to 
changes in the canopy that are not related to forest productivity (Fiore 
et al., 2020; Sulla-Menashe et al., 2018). This could explain, at least 
partially, the weak or inconsistent relationships found in previous 
studies between tree-ring data and Landsat-derived NDVI or Enhanced 
Vegetation Index (EVI) (Bonney and He, 2021; Decuyper et al., 2020; 
Vicente-Serrano et al., 2016). 

The impact of biotic or abiotic stressors and disturbances is related to 
site-specific factors (Isaacs et al., 2014; Mallet and Bretar, 2009; Mamet 
et al., 2015), which can be captured by topographical information 

Fig. 9. Actual versus predicted decrease in BAI (mm2yr− 1) for the twenty-nine 
plots that sustained a severe growth decline between the reference (2000–2010) 
and decline (2011–2021) periods. The solid line indicates the 1:1 ratio. 

Fig. 10. Model predictions and unconditional 95% confidence interval for the 
TCW slope, which was included in the best-ranked OLS model to predict the 
magnitude of the change in BAI. 
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obtained from ALS data. The inclusion of elevation and TWI increased 
the accuracy and fit of the logistic regression model predicting the 
probability of severe growth decline, thus addressing one of the objec-
tives of this study. Although we did not aim to quantify the relative 
contribution of the two investigated NSR disturbances on the observed 
growth declines, the respective effect of topographical variables 
included in the model is consistent with findings from previous studies 
on both spruce budworm defoliation and drought events. The higher 
susceptibility to defoliation by the spruce budworm observed at lower 
elevations could be attributable to the effects of elevation on tempera-
ture, forest productivity, species composition, and soils (Blais, 1957; 
Hodkinson, 2005; Magnussen et al., 2004), although Bouchard and 
Auger (2014) found a low association between these characteristics and 
the intensity of the defoliation. The effect of drought can also be influ-
enced by the topographic position of the stands. Although trees on the 
driest sites are often the most vulnerable to drought, our findings suggest 
the opposite. Stands at lower elevations and those with higher TWI 
values were more likely to experience a severe growth decline. Similar 
conclusions have been drawn from other studies conducted on black 
spruce and co-occurring boreal species in Canada. Black spruce trees 
situated in cooler, wetter locations were more adversely affected by 
drought compared to trees growing on dry sites (Walker et al., 2015; 
Wolken et al., 2016), a phenomenon also observed on white spruce 
(Lloyd et al., 2013). A common hypothesis for this is that low elevation, 
wet sites accumulate a high snow load compared to sites along slopes or 
on hilltops. This extends the period during which roots remain frozen, 
which impedes photosynthesis when the evaporative demand begins to 
increase because of warmer air temperatures (Lloyd et al., 2013; Walker 
et al., 2015; Wolken et al., 2016). The physiological limitation on water 
uptake from roots in cold soils cause these stands to be vulnerable to 
early season moisture deficit during warm springs, consistent with the 
previously reported negative response of growth to spring temperatures 
(Lloyd et al., 2013; Wolken et al., 2016). This seemingly higher 
vulnerability to drought in wet, low topographic positions may also be 
attributable to genetic differences, particularly those that enable certain 
black spruce families to better tolerate water deficits (Tan and Blake, 
1997). Trees growing in consistently humid sites may exhibit fewer 
adaptations to drought than those growing at higher altitudes or where 
water stress is more frequent, although this hypothesis would require 

additional investigation.With respect to the impact of spruce budworm 
defoliation, wetter and less productive sites are at greater risk of expe-
riencing severe growth declines during an outbreak (Payette and Del-
waide, 2003; Sánchez-Pinillos et al., 2019), although others have 
concluded that site wetness does not have a significant influence (Bou-
chard and Auger, 2014; Lacey and Dech, 2012). 

4.3. Effect of NSR disturbances on changes in BAI 

The magnitude of the predicted growth declines was spatially highly 
variable across the study sites and raises uncertainty regarding the 
future of the most affected stands. Understanding the underlying causes 
of the variability in the observed growth declines represents a challenge 
considering the potential interactions between disturbance agents. 

While our results do not allow us to determine the relative impact of 
drought events and defoliation by the spruce budworm on the observed 
growth declines, a comparison of model predictions with defoliation 
data suggests that both disturbances likely played a contributing role. 
Aerial defoliation survey data confirms that model predictions of tree 
growth decline are generally spatially coherent with the pattern of 
defoliation observed across the study sites. Areas that have experienced 
defoliation for a longer period are also, in general, those where the risk 
of growth decline is mapped as the highest. The cumulative number of 
years with defoliation was, however, lower at the RMF site, as the 
outbreak started only in 2015, a few years after the onset of the growth 
decline. We note that several plots at the RMF site were mapped as not 
defoliated during the aerial surveys, yet they sustained a considerable 
decrease in BAI. Within each study site, there was substantial variability 
in the number of years with defoliation, both in areas of severe growth 
decline and in areas where no severe growth decline was predicted by 
the logistic regression model. At the LSJ site, the cumulative years of 
defoliation in areas of severe growth decline ranged from 0 years (5th 
percentile) to 8 years (95th percentile), while in areas without severe 
growth decline, the corresponding values were 0 and 6 years. Similarly, 
at the RMF site, areas of severe growth decline experienced between 
0 (5th percentile) and 3 years (95th percentile), while in areas without 
severe growth decline, the corresponding values were 0 and 2 years, 
respectively. These results suggest that the spruce budworm is just one 
of the factors contributing to the observed growth declines, which could 

Fig. 11. Predicted decrease in median annual growth rate (BAI; mm2yr− 1) between the reference (2000–2010) and decline (2011–2020) periods for sub-areas of the 
LSJ (A) and RMF (B) study sites that have sustained the largest declines. 
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be explained by the combined effect of insect defoliation and drought 
(Bouchard et al., 2018; De Grandpré et al., 2019). 

Drought conditions can impact vigour and growth for several 
consecutive years, persisting even when the climate becomes more 
humid (Kannenberg et al., 2020; Wu et al., 2018). This legacy effect of 
drought can emerge after a single event or through an accumulation of 
relatively mild droughts, which decreases the tree’s resilience and make 
it more vulnerable to subsequent stressors (Kannenberg et al., 2020; Liu 
et al., 2019; Sánchez-Pinillos et al., 2022). There can also be a lag be-
tween the occurrence of drought and the impacts on growth and mor-
tality (Anderegg et al., 2019; Itter et al., 2019; Kannenberg et al., 2020). 
The detrimental effects of the drought periods observed at both sites 
could explain why the growth decline was initiated synchronously 
despite the spruce budworm outbreak starting several years later at the 
RMF site than at the LSJ site. 

4.4. Implications for the management of black spruce forests under 
climate change 

This study is part of a wider research effort dedicated to the pro-
duction of so-called living or continuous forest inventories, which rely 
on a combination of remote sensing data, ground-based surveys, and 
forest growth modelling to produce forest inventories that are precise, 
spatially explicit, and frequently updated (Coops et al., 2023). Our 
approach enables the production of spatially explicit information on the 
probability of severe growth declines in black spruce stands, as well as a 
quantification of the associated changes in BAI. The Landsat-derived 
predictor included in both the logistic and OLS regression models 
captured the associated changes in the canopy spectral reflectance 
response. While the detection and mapping of the severity of NSR dis-
turbances such as drought and insect defoliation is increasingly common 
(Coops et al. 2020), the current study is among the first to link these 
disturbances to a direct measure of tree growth using remotely sensed 
data and to generate predictions over areas equivalent to that of a forest 
management unit. The proposed method opens new opportunities for 
adopting more agile and adaptive forest management and silvicultural 
practices. Areas identified as the most at risk of having experienced a 
severe growth decline could be targeted for silvicultural actions aimed at 
enhancing the resistance and resilience of the stands, or could be 
prioritized for harvest in order to limit the risks of losses due to immi-
nent mortality (Achim et al., 2022; Moreau et al., 2022), which could 
also result in the increased risk of fire ignition under certain circum-
stances (James et al., 2017). 

Quantifying the magnitude of the growth decline caused by NSR 
disturbances also provides valuable information required to update 
growth and yield projections in a forest management unit. This infor-
mation would allow adjustments of harvest levels to account for the 
observed losses, which were not necessarily foreseen by the current 
growth and yield models. Additionally, such data could enable near real- 
time adjustments of carbon exchange models with the atmosphere and 
improve the calculation of the carbon balance, which is inevitably 
impacted by such growth reductions (Boisvenue and White, 2019; Klesse 
et al., 2016; Wang et al., 2021). 

Several challenges remain to be addressed for an operational 
implementation of the approach. The current study was conducted on a 
single, relatively homogeneous forest type, and further work is needed 
to verify the transferability of the models to other forest types, or to 
develop models applicable over a larger proportion of the stands 
composing the boreal forest. Additional work is also necessary to 
investigate the influence of the time window used to measure the change 
in growth from the tree rings. In this study, an 11-year window was 
utilised, which corresponds approximately to the update interval of 
traditional forest inventories (Coops et al., 2023; Gillis et al., 2005). The 
possibility of using shorter intervals could also be explored as it would 
allow for the earlier detection of decline and the more rapid imple-
mentation of targeted interventions. The next steps also involve 

estimating volume and total aboveground biomass losses, which are 
fundamental units of forest yield and productivity. The increasing 
availability of repeated LiDAR acquisitions, enabling fine-scale mapping 
of forest attributes, offers the opportunity to achieve this objective. 

5. Conclusion 

This study demonstrated the usefulness of Landsat data to estimate 
the probability of severe growth decline as a result of NSR disturbances, 
namely drought and defoliation by the spruce budworm. The slope of 
the TCW index was the most important predictor of BAI decline. Using 
this index also allowed for the prediction of the magnitude of the growth 
decline in the most affected areas. The inclusion of ALS-derived topo-
graphic variables, specificatlly elevation and TWI, improved the accu-
racy of the logistic regression predicting the probability of a severe 
growth decline, but did not improve the performance of the OLS 
regression model aimed at predicting the magnitude of the change in 
BAI over time. Although the current study was limited to a specific forest 
type and condition, our results show the potential of linking a direct 
measure of forest growth (i.e. tree-ring data) to Landsat time series data 
to generate relevant information for forest management decision- 
making. In a context of uncertainty regarding future disturbance re-
gimes and their impacts on timber supply and forest carbon stocks, 
generating spatially explicit information on changes in forest growth 
due to NSR disturbances could help concentrate field efforts and silvi-
cultural interventions in the most affected or vulnerable areas. 
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Silla, F., Camisón, A., Génova, M., Olano, J.M., Galván, J.D., 2018. Forest resilience 
to drought varies across biomes. Glob. Change Biol. 24 (5), 2143–2158. https://doi. 
org/10.1111/gcb.14082. 

Gillis, M.D., Omule, A.Y., Brierley, T., 2005. Monitoring Canada’s forests: the national 
forest inventory. For. Chron. 81 (2), 214–221. https://doi.org/10.5558/tfc81214-2. 

Girardin, M.P., Raulier, F., Bernier, P.Y., Tardif, J.C., 2008. Response of tree growth to a 
changing climate in boreal central Canada: a comparison of empirical, process- 
based, and hybrid modelling approaches. Ecol. Model. 213 (2), 209–228. https:// 
doi.org/10.1016/j.ecolmodel.2007.12.010. 

Girardin, M.P., Bouriaud, O., Hogg, E.H., Kurz, W., Zimmermann, N.E., Metsaranta, J.M., 
de Jong, R., Frank, D.C., Esper, J., Büntgen, U., Guo, X.J., Bhatti, J., 2016. No growth 
stimulation of Canada’s boreal forest under half-century of combined warming and 
CO 2 fertilization. Proc. Natl. Acad. Sci. 113 (52), E8406–E8414. https://doi.org/ 
10.1073/pnas.1610156113. 

Girardin, M.P., Guo, X.J., Metsaranta, J., Gervais, D., Campbell, E., Arsenault, A., 
Hogg, E.H., 2021. A national tree-ring data repository for Canadian forests (CFS- 
TRenD): structure, synthesis, and applications. Environ. Rev. 29 (2), 225–241. 

Grissino-Mayer, H.D., Fritts, H.C., 1997. The international tree-ring data bank: an 
enhanced global database serving the global scientific community—Henri D. 
Grissino-Mayer, Harold C. Fritts 1997 https://journals.sagepub.com/doi/abs/ 
10.1177/095968369700700212.  

Guibal, F., Guiot, J., 2021. Dendrochronology. In: Ramstein, G., Landais, A., Bouttes, N., 
Sepulchre, P., Govin, A. (Eds.), Paleoclimatology. Springer International Publishing, 
pp. 117–122. https://doi.org/10.1007/978-3-030-24982-3_8. 

Harper, K., Bergeron, Y., Gauthier, S., Drapeau, P., 2002. Post-fire development of 
canopy structure and composition in black spruce forests of Abitibi, Québec: a 
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méridional—Méthodes et données associées (p. 129). Ministère des Ressources 
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des forêts. https://www.donneesquebec.ca/recherche/fr/dataset/donnees-sur-les- 
perturbations-naturelles-insecte-tordeuse-des-bourgeons-de-lepinette. 

Mulverhill, C., Coops, N.C., Achim, A., 2023. Continuous monitoring and sub-annual 
change detection in high-latitude forests using Harmonized Landsat Sentinel-2 data. 
ISPRS J. Photogramm. Remote Sens. 197, 309–319. https://doi.org/10.1016/j. 
isprsjprs.2023.02.002. 

Nabuurs, G.J., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, E., Ford- 
Robertson, J., Matsumoto, M., Oyhantcabal, W., Achard, F., Anaya, C., Brinkman, S., 
Higuchi, N., Hoogwijk, M., Lecocq, F., Rose, S., Schlamadinger, B., Filho, B.S.S., 
Sohngen, B., … Calvo, E. (2007). Chapter 9—Forestry. IPCC, Cambridge University 
Press, Cambridge, UK and New York, NY, USA., 44. 

Næsset, E., 2002. Predicting forest stand characteristics with airborne laser scanning 
using a practical two-stage procedure and field data. Remote Sens. Environ. 80, 
88–99. https://doi.org/10.1016/S0034-4257(01)00290-5. 

Nehrbass-Ahles, C., Babst, F., Klesse, S., Nötzli, M., Bouriaud, O., Neukom, R., 
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