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RESEARCH ARTICLE

Attributing a Causal Agent and Assessing the Severity of Non-Stand
Replacing Disturbances in a Northern Hardwood Forest using Landsat-
Derived Vegetation Indices

Attribution d’un agent causal et mesure de la s�ev�erit�e de perturbations
interm�ediaires en forêt feuillue nordique �a partir d’indices de v�eg�etation
d�eriv�es de Landsat

Alexandre Morin-Bernarda, Alexis Achima , and Nicholas C. Coopsb

aDepartment of Wood and Forest Sciences, Universit�e Laval, 2425 rue de la Terrasse, Qu�ebec, QC, G1V 0A6, Canada; bDepartment of
Forest Resources Management, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada

ABSTRACT
Non-stand-replacing disturbances are major drivers of northern hardwood forest dynamics,
but are more challenging to characterize using satellite imagery than stand-replacing events.
This study proposes a hurdle approach in which disturbance causal agents are first attrib-
uted to permanent sample plots that were either partially harvested, had sustained damage
from an ice storm or remained undisturbed during the observation period, reaching an
overall accuracy of 82.9%. Ordinary least square regression was then used to develop dis-
turbance-specific models to assess the severity of partial harvests and damage from ice
storms, with r-squared values of 0.57 and 0.59, respectively. The disturbance-specific models
included a different set of predictors, confirming the importance of attributing a causal
agent to a disturbance before assessing its severity. The sequence of models was imple-
mented regionally to produce severity maps for two disturbance events, revealing within-
stand variability in the severity that could be useful for the planning of future silvicultural
actions. Although the proposed models offer acceptable performance, more research is
needed to include additional disturbance agents and develop models that better capture
the small variations in the spectral reflectance caused by low-severity disturbances, espe-
cially in the case of low-intensity partial harvests.

RÉSUMÉ

Les perturbations interm�ediaires influencent fortement la dynamique des forêts de feuillues
nordiques, mais sont plus difficiles �a d�etecter et �a caract�eriser �a l‘aide de l‘imagerie satelli-
taire que les perturbations de forte intensit�e. Cette �etude propose une approche par �etapes
dans laquelle les agents causaux des perturbations sont d‘abord attribu�es �a des placettes-
�echantillon permanentes qui ont �et�e partiellement r�ecolt�ees, ont subi des dommages dus
au verglas ou sont rest�ees intactes pendant la p�eriode d‘observation avec une pr�ecision
globale de 82.9%. Des mod�eles lin�eaires distincts permettant l’estimation de la s�ev�erit�e des
coupes partielles et des dommages dus au verglas ont ensuite �et�e d�evelopp�es, dont les
coefficients de d�etermination respectifs sont de 0.57 et 0.59. Les mod�eles sp�ecifiques aux
perturbations comprenaient un ensemble diff�erent de pr�edicteurs, confirmant l‘importance
d‘attribuer un agent causal �a une perturbation avant d‘en �evaluer la s�ev�erit�e. Les mod�eles
ont �et�e appliqu�es r�egionalement pour estimer la s�ev�erit�e de deux �ev�enements ponctuels,
r�ev�elant une variabilit�e dans la s�ev�erit�e �a une �echelle inf�erieure �a celle du peuplement
forestier. Cette information pourrait permettre une meilleure planification des actions sylvi-
coles futures. Bien que les mod�eles propos�es offrent une performance satisfaisante, des
recherches suppl�ementaires sont n�ecessaires pour inclure davantage de types de perturba-
tions interm�ediaires et pour d�evelopper des mod�eles qui capturent mieux les variations sub-
tiles de la s�ev�erit�e des perturbations interm�ediaires, en particulier dans le cas des coupes
partielles de faible intensit�e.

ARTICLE HISTORY
Received 14 November 2022
Accepted 23 March 2023

CONTACT Alexandre Morin-Bernard alexandre.morin-bernard.1@ulaval.ca
� 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the
posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

CANADIAN JOURNAL OF REMOTE SENSING
2023, VOL. 49, NO. 1, 2196356
https://doi.org/10.1080/07038992.2023.2196356

http://crossmark.crossref.org/dialog/?doi=10.1080/07038992.2023.2196356&domain=pdf&date_stamp=2023-04-08
http://orcid.org/0000-0003-0118-1651
http://orcid.org/0000-0002-0151-9037
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/07038992.2023.2196356
http://www.tandfonline.com


Introduction

Northern hardwood forests are among the most com-
plex and biologically diverse ecosystems in Canada,
providing some of its most valued wood products.
Their dynamics are driven by disturbances caused by
biotic and abiotic agents such as wind, freezing rain,
pathogens and herbivory insects, resulting in canopy
gaps of varying extent and a characteristic uneven-
aged structure. The return interval of such non-stand-
replacing disturbances in these forests is much shorter
than that of severe, stand-replacing disturbances,
which can reach thousands of years (Payette et al.
1990; Seymour et al. 2002). Although the impact of an
individual disturbance is limited, the composite effect
of these low- to moderate severity events at the eco-
system scale is a key driver of forest composition,
structure and biomass dynamics (Payette et al. 1990;
Woods 2000; Woods and Kern 2022). Northern hard-
wood forests are also subject to anthropogenic distur-
bances such as harvesting, which become the main
driver of forest compositional changes in the most
intensively managed regions (Danneyrolles et al.
2019).

Silvicultural systems in these forests generally rely
on partial harvesting (Figure 1(a)), which involves
removing between 15% and 50% of the basal area (BA,
m2�ha�1) of a stand i.e., the sum of the cross-sectional
areas of tree stems at 1.3m in height over a unit area
of land (Merrill 1935). The use of BA in silvicultural
prescriptions has the dual advantage of avoiding the
imprecision of volume estimates due to the complex
architecture of broadleaved trees and being linked to
the understory light regime within a stand.
Manipulation of BA through partial harvesting
helps maintain the uneven-aged structure of forest
stands over time by replicating the natural disturbance
regime of northern hardwood forests characterized
by the dominance of non-stand replacing
disturbances (Leak et al. 2014; Seymour et al. 2002).
Such silvicultural systems, therefore, favor the regener-
ation of species with intermediate to high tolerance to
shade (Grayson et al. 2012; Jenkins and Chambers
1989).

The projected increase in the frequency and sever-
ity of extreme climate events (Peng et al. 2011; Seidl
et al. 2017) will inevitably affect the way northern
hardwood forests are shaped by disturbances. The

Figure 1. (a) Hardwood stand with soil exposed in the logging trails after a partial harvest. (b) Hardwood stands in which crowns
were severely damaged consecutively by an ice storm.
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extent to which these changes will alter the ecosystem
services they provide and their contribution to timber
supply remains largely unknown (Gardiner and Moore
2014; Thom and Seidl 2016; Turner 2010). To better
forecast these impacts and identify potential remedial
actions, it is imperative to get a more accurate picture
of the frequency, severity and extent of these more
subtle disturbance events. This is usually not achiev-
able from traditional forest inventory approaches,
which rely on a limited number of ground plots that
are not measured every year and that are not neces-
sarily distributed representatively across the
ecosystem (Bowman et al. 2013; Gillis et al. 2005).

Remote sensing from satellite imagery has become
an indispensable tool to detect and characterize forest
disturbances. Among available products, imagery from
the Landsat program is now widely used for the mon-
itoring of forest dynamics, providing continuous data
since 1972 with a spatial resolution offering the possi-
bility to study forest change both at global and
regional scales, on short and long timescales (Banskota
et al. 2014; Coppin and Bauer 1996; Wulder et al.
2022). The validity of conclusions drawn from such
studies relies on the accuracy of the methods used to
measure change. Detecting and assessing the severity
of non-stand-replacing disturbances is much more
challenging than it is for severe, stand-replacing dis-
turbances, mostly because the changes they cause are
of lower magnitude (Ahmed et al. 2017; Coops et al.
2020; Hermosilla et al. 2015a).

In broadleaved forests, Landsat has proven useful
for studying non-stand replacing disturbances such as
ice storms and partial harvests. Ice storms are severe
events of freezing rain, causing the accumulation of
heavy loads of ice on tree branches (Proulx and
Greene 2001; Rhoads et al. 2002). This disturbance is
common in eastern North America, where climate
and physiography favor the development of the
required combination of air and precipitation
temperatures (Bennett 1959). In the region of Canada
dominated by the northern hardwood forest ecosys-
tem, ice accumulation from freezing rain occurs on an
annual basis, influencing stand dynamics by causing
variable levels of damage to tree crowns (Figure 1(a)),
and causing mortality in moderately rare events where
ice accumulation exceeds critical levels (Proulx and
Greene 2001). In Eastern Ontario, Olthof et al. (2004)
used measurements of damage to the canopy taken in
104 ground plots and concluded that changes in the
Landsat-derived normalized difference vegetation
index (NDVI) could not discriminate between many
levels of damage, but could be useful to classify it in a

limited number of categories. In the same region and
for the same ice storm event, King et al. (2005) used a
combination of pre- and post-disturbance values of
the Landsat blue, red and shortwave infrared bands as
well as biophysical variables to model canopy loss as a
continuous variable with moderate success. In the
White Mountains in the north-eastern United States,
Burnett (2002) classified damage after an ice storm
measured in 288 sites in three categories using NDVI
and a ratio of shortwave and near-infrared Landsat
bands, with accuracy from 78% to 82%. In the
Adirondack forests of New York, Millward and
Kraft (2004) found a significant and linear relationship
between the change in NDVI values and in-situ meas-
urements of damage to the canopy taken on a limited
number of plots (16) after an ice storm. In the
Appalachian mountains, Stueve et al. (2007) also
found a statistically significant, but the nonlinear rela-
tionship between NVDI changes and the number of
downed trees after an ice storm.

Partial harvesting has also been studied using
Landsat data. Franklin et al. (2000) concluded that
Landsat indices derived from the Tasseled Cap
transformation, combining the information
contained in six Landsat bands through orthogonal
transformation (Crist and Cicone 1984), were moder-
ately accurate for the detection of partial harvests in
New Brunswick, while NDVI was easily confused in
hardwoods because of the lush understory. In a subse-
quent study, Franklin et al. (2001) used the Tasseled
Cap Wetness (TCW) to classify harvested stands into
three categories of intensity. In Maine, Wilson and
Sader (2002), Sader et al. (2003) and Jin and
Sader (2005) used the normalized difference moisture
index (NDMI), based on one of the Landsat shortwave
infrared bands in addition to the near-infrared band,
to detect and classify clearcut and partial harvests.
They concluded that this index performed better than
NDVI, and similarly to TCW in detecting harvests.
When comparing different harvest practices in British
Columbia, Jarron et al. (2017) found that the magni-
tude of change in the normalized burn ratio (NBR)
consecutively to harvesting was representative of the
intensity of the studied harvest practices. The NBR
was also used by Tortini et al. (2019) to map partial
harvests and clearcut in Michigan. Although the
detection of partial harvests has received considerable
attention, measuring the intensity of the cut has
received considerably less attention. Yet, a more pre-
cise estimation of the change in harvested stands
would be useful for forest managers because the actual
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basal area removal influences the post-harvest dynam-
ics of the stand (Leak et al. 2014).

One of the main obstacles in studies dedicated to
non-stand replacing disturbances is the availability of
accurate data on the actual severity of the disturban-
ces. Calibration and validation data are therefore fre-
quently derived from indirect sources such as aerial
surveys, high-resolution photos or other remote sens-
ing products (e.g., Tortini et al. 2019). While such
sources provide useful estimates of the extent of the
damage over a large spatial coverage, they often com-
prise estimation errors that can limit the possibility to
conduct analyses at a resolution that is useful for for-
est management (Johnson and Ross 2008). Field
inventories provide the most accurate validation data
but are uncommon because of the prohibitive collec-
tion costs and the need for measurements both before
and after the disturbance. Yet, when available, such
field-validated data allows a clear confirmation of the
agent responsible for the disturbance and a precise
quantification of the impacts of the disturbance on
both the canopy and the sub-canopy layers (Rodman
et al. 2021).

Studies on the detection and characterization of
non-stand replacing disturbances using satellite
imagery have resulted in approaches that rely on dif-
ferent Landsat bands and vegetation indices and have
revealed distinct relationships between the change in
spectral reflectance and the severity of the disturban-
ces depending on the causal agent. An accurate assess-
ment of the impacts of a disturbance, therefore,
requires prior knowledge of its causal agent.
Moreover, initial forest conditions are likely to influ-
ence the relationship between changes in spectral
reflectance and the severity of the event (Harvey et al.
2019). Few studies have so far focused on classifying
disturbances according to their causal agent, and those
that did were either interested exclusively in stand-
replacing disturbances (e.g., Coops et al. 2020), were
classifying non-stand replacing disturbances versus
stand-replacing disturbances (e.g., Hermosilla et al.
2015a), or were conducted in boreal forests in which
the initial conditions tend to be more uniform (e.g.,
Ahmed et al. 2017).

The objective of this study was to identify Landsat-
derived vegetation indices allowing the correct attribu-
tion of a causal agent to disturbances resulting from
an ice storm and from partial harvests in northern
hardwood forests. This study also aimed to identify
indices that are appropriate to assess the severity of
these disturbances. The influence of the pre-disturb-
ance conditions of the stands on the relationships

between changes in surface reflectance and the sever-
ity of the disturbance was also investigated, and case
studies were produced in which the severity of the
two types of disturbance was mapped on samples of
the study area.

Methods

Study area

The study area is located in southern Quebec,
Canada, within woodlots owned by Domtar
Corporation (Figure 2). Totaling more than 160 000
hectares, the forest estate stretches through two biocli-
matic subdomains i.e., the American basswood (Tilia
americana L.) and the sugar maple (Acer saccharum
Marsh.)- yellow birch (Betula alleghaniensis Britt.)
subdomains (Saucier et al. 2009). In the ecological dis-
tricts where the woodlots are located, the mean annual
temperature ranges from 2.5–5 �C and the growing
season length varies between 160 and 190 days. These
districts are characterized by mean annual precipita-
tion between 1000 and 1100mm (Gosselin 2005,
2007). Forests on mesic sites typically consist of
uneven-aged stands, dominated by northern hard-
wood species, mainly sugar and red maples (Acer
rubrum L.), yellow birch and American beech (Fagus
grandifolia Ehrh.), with a smaller component of paper
birch (Betula papyrifera Marsh.), white ash (Fraxinus
americana L.), balsam fir (Abies balsamea [L.] Mill.)
and red spruce (Picea rubens Sarg.). According to pro-
jections made using a thirteen global circulation
model ensemble in climate NA (Wang et al. 2016), the
maximum temperature in both summer and winter
over the study area is expected to increase by 4.8 �C
and 4.2 �C, respectively, based on an average of pro-
jections for shared socioeconomic pathways (SSP) 1–3
and 5 (Riahi et al. 2017).

Disturbance data

The forest inventory dataset used in this study comes
from an extensive network of permanent sample plots
established in hardwood-dominated stands between
1984 and 2010 and revisited periodically. Plots estab-
lished from 1997 onwards are circular, with a radius
of 11.28m (400m2) while plots established before 1997
had the same area but are rectangular. All trees with a
diameter at breast height (DBH) greater than 90mm
were measured at each survey. Newly dead trees and
newly recruited trees that had reached a DBH greater
than 90mm were also recorded at each visit. From all
plots of the network, 140 were selected to be included
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in the current study. A partial harvest had occurred in
46 of these plots. Silvicultural treatments included
shelterwood, selection and salvage cuts ranging from
16% to 50% of basal area removal, as assessed from
the post-harvest field inventory. Partial harvest opera-
tions were conducted in these plots in one of fourteen
years distributed in the period from 2001 to 2020.
The exact dates were determined using the execution
reports submitted after the operations. A minimum of
one and a maximum of eight sample plots were har-
vested in each of the fourteen years of observation.

In addition, 47 plots that were damaged during a
major ice storm event were selected. From 5 January
1998 to 9 January 1998, an unprecedented ice storm,
depositing as much as 100mm of ice in the worst
affected areas, hit eastern Ontario, southern Quebec,
and the northeast United States, causing devastation
in the northern hardwood forests (Chabot et al. 1998;
Irland 1998; Proulx and Greene 2001). Damage to
crowns was assessed visually in the field during the
growing season following the ice storm, by estimating
the percentage of branches that were broken on each
individual tree within the plot. The canopy damage at
the plot level was obtained by averaging the damage

to the crowns of each tree, weighted by their respect-
ive basal area. The plot-averaged damage to the can-
opy ranged from 5% to 67%.

Finally, 47 control plots were randomly selected
among the remaining plots of the network located in
the same area, ensuring no disturbance was recorded
in the surveys conducted before and after the assigned
disturbance year. Fictive disturbance years were
assigned to the control plots using a stratified
approach creating a distribution of years similar to
that of disturbed plots. A description of the pre-dis-
turbance stand characteristics is presented in Table 1.

Development of the Landsat Surface Reflectance
composites

Landsat TM, ETMþ and OLI Tier 1 Surface
Reflectance scenes with less than 70% cloud cover,
geometrically and atmospherically corrected, were
used to create median composites for various years
over each of the 140 selected plots. Only scenes
acquired during the growing season in this region (i.e.,
June 1–August 30) were used. Pixels containing clouds
or cloud shadows were masked and an additional

Figure 2. Location of the study area and of the two subsets used for model application. (a) Area of broadleaved-dominated stands
on which the severity of the damage resulting from the ice storm was mapped. (b) Harvest area composed of six stands harvested
in 2020 on which the basal area removal consecutively to the partial harvests was mapped.
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visual inspection of the scenes was done to ensure the
absence of undetected cloud shadows or thin clouds
over the plots. A total of 246 scenes from Worldwide
Reference System Paths 12 and 13, Rows 28 and 29
were used to create the composites, the acquisition
dates ranging from 1996 to 2021 (Table 2).

A series of composite images were built separately
for each plot, at different intervals depending on the
date of the disturbance. Two distinct annual median
composites were first produced for each plot from the
scenes acquired in the two growing seasons preceding
the disturbance. These composites were then averaged
to produce a single pre-disturbance composite referred
to as the reference composite. Scenes acquired in the
growing season immediately following the disturbance
were used to produce an additional composite, here-
after referred to as the disturbance composite. The ice
storm, as well as most of the harvest operations,
occurred between the second and third growing sea-
sons because the harvest occurred in winter. For plots
harvested during a growing season, scenes from the
growing season corresponding to the harvest were
attributed either to the reference or the disturbance
composites depending on whether the image was

captured before or after the date of harvest. A last
composite was produced from the scenes acquired in
the second growing season following the disturbance,
which will be referred to as the post-disturbance com-
posite. Between 1 and 18 scenes were used to build
the reference, disturbance and post-disturbance com-
posites depending on the plot and type of
disturbance (Table 3). The Google Earth Engine
platform (GEE, Gorelick et al. 2017) was used for
scene extraction and compositing.

Calculation of vegetation indices and change
metrics

Five vegetation indices were calculated from the
median composites (Table 4). The NBR was originally
developed to assess burn severity after wildfires (Key
and Benson 2006), but has also proven useful to dis-
criminate between different harvest intensities and
detect a large variety of disturbances (Jarron et al.
2017; Kennedy et al. 2010). Two indices derived from
the Tasseled Cap transformation, the TCW and TCA,
were also included because of their known association
with the density of the forest cover and their potential
use in detecting forest removal and other
disturbances (Franklin et al. 2000; Healey et al. 2006;
Jin and Sader 2005). An index entirely based on the
visible bands, the Green-Red Vegetation Index (GRVI)
was also included in the study because of its sensitiv-
ity to phenology and subtle changes in the canopy of
broadleaved forests (Motohka et al. 2010; Muraoka
et al. 2013). The NDVI was also included as a refer-
ence, because of its extensive early studies on disturb-
ance detection.

The average value of the vegetation indices was
extracted from the composites over a 3� 3-pixel win-
dow enclosing the location of the plots, resulting in a
short time series of three values per vegetation index
per plot, representing the reference, disturbance and
post-disturbance conditions, respectively. These values
were used to compute two change metrics for each

Table 1. Pre-disturbance characteristics of the plots included
in the sample.

Control Harvest Ice storm

Number of plots 47 46 47
Initial basal area (m2 � ha�1)
Average 22.7 26.0 25.7
Min 12.2 12.4 13.9
Max 39.2 39.7 39.0

Initial stem density (stem � ha�1)
Average 552 572 617
Min 300 250 300
Max 1625 1150 1350

Mean DBH (cm)
Average 23.6 24.9 24.0
Min 13.2 14.1 14.9
Max 34.7 33.9 33.5

Maples (% BA)
Average 75.3 75.3 70.5
Min 7.1 31.8 15.7
Max 100 100 100

Yellow birch (% BA)
Average 8.8 10.1 14.6
Min 0.0 0.0 0.0
Max 41.3 45.7 75.4

American beech (% BA)
Average 5.0 9.9 9.7
Min 0.0 0.0 0.0
Max 42.9 67.1 46.3

Table 2. The number of scenes from each Landsat satellite
used to build the composites.
Satellite Number of scenes First year Last year

Landsat 5 TM 102 1996 2011
Landsat 7 ETMþ 109 1999 2020
Landsat 8 OLI 35 2013 2021

Table 3. The number of Landsat scenes used to build the
composites for plots in each disturbance category and timing
relative to the disturbance event.
Disturbance Nbr of plots Composites Minimum Maximum Average

Control 47 Reference 1 14 6.1
Disturbance 1 7 3.1
Recovery 1 10 5.0

Harvest 46 Reference 2 18 7.7
Disturbance 1 8 2.6
Recovery 1 9 3.2

Ice storm 47 Reference 1 7 3.0
Disturbance 1 6 2.4
Recovery 3 15 7.6
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vegetation index. The change in the index value due
to the disturbance (Equation 1), hereafter referred to
as the delta (d) was calculated as the difference
between the value of the vegetation index in the grow-
ing season immediately following the disturbance (VIt)
and the reference index value (VIpre). The recovery of
the index value one year after disturbance (Equation 2),
referred to as the recovery, was calculated by subtract-
ing the value of the vegetation index taken from the dis-
turbance composite (VIt) to its value in the second
growing season following the disturbance, taken from
the post-disturbance composite (VItþ1).

dVI ¼ VIpre� VIt (1)

VI recovery ¼ VItþ1� VIt (2)

Recovery was included in the current study because
the persistence of the changes in the canopy spectral
reflectance has proven useful in discriminating
between disturbance agents (Coops et al. 2020).

Modeling

Attribution of the disturbance agent
Multinomial logistic regression (MLR) was used to
investigate how the Landsat-derived metrics could
allow discriminating between the effects of the two
disturbances and differentiate stands that were dis-
turbed from those that remained undisturbed. MLR is
an extension of binary logistic regression used when
the categorical dependent variable has more than two
categories. The outcome from MLR is a probability
associated with each class of the dependent
variable (Jobson 2012). MLR has been used extensively
to solve classification problems in environmental and
remote sensing studies, for instance, to classify land
cover types from satellite imagery (e.g., McRoberts
2011) soil types from topographic data (Debella-Gilo
and Etzelm€uller 2009) and crop disease status using a
hyperspectral radiometer (Prabhakar et al. 2013). The
assumptions of MLR do not include normality,

linearity, or homoscedasticity, making it less restrictive
than other classification methods used in remote sens-
ing such as discriminant analysis. The results from
MLR are also easy to interpret compared to the results
of other machine learning approaches (Hogland et al.
2013). Penalized MLR was used in the current study
because it allows removing the bias in the maximum
likelihood estimates of the parameters when the num-
ber of outcome categories is large or, as in the current
study, when the sample size is small (Bashir and
Carter 2010; Firth 1993; Kosmidis and Firth 2011). In
penalized MLR, a penalty function is applied to shrink
the coefficients of the less contributive variables
toward zero, reducing overfitting issues (de Jong et al.
2019).

A set of candidate models was built from the
Landsat metrics calculated for the vegetation indices
presented above. The reliability of penalized MLR
remains affected by the number of events per
variables (EPV), which represents the number of
events in the smaller outcome group divided by the
number of regression coefficients estimated. While no
absolute recommendations have been formulated in
the case of MLR, a conservative minimal number of
EPV (i.e., 23) was maintained in the current study by
including a maximum of two explanatory variables in
the candidate models (Austin and Steyerberg 2017; de
Jong et al. 2019). Only combinations of variables with
a Pearson R coefficient under 0.7 were included in a
given model. In the first group of candidate models,
two delta metrics susceptible to be indicative of differ-
ent changes in canopy condition were included, while
a second group included both one delta and one
recovery metric. Implementation of the models was
done in the R programming environment using the
140 plots distributed in the three disturbance catego-
ries. The final model was identified after a model-
selection procedure based on the Second-order Akaike
Information Criterion (AICc) conducted using R pack-
age AICcmodavg (Mazerolle 2020).

Table 4. Vegetation indices, equations and references used in the current study.
Index Equation Reference

Normalized Difference Vegetation Index (NDVI) ¼ (NIR� Red) / (NIRþ Red) (Tucker 1979)
Normalized Burn Ratio (NBR) ¼ (NIR – SWIR2) / (NIRþ SWIR2) (Key and Benson 2006)
Green-Red Vegetation Index (GRVI) ¼ (Green – Red) / (Greenþ Red) (Motohka et al. 2010; Tucker 1979)
Tasseled Cap Wetness (TCW) ¼ 0.0315 � Blue þ 0.2021 � Green þ 0.3102 �

Red þ 0.1594 � NIR � 0.6806 �
SWIR1� 0.6109 � SWIR2

(Crist 1985)

Tasseled Cap Angle (TCA) ¼ arctan(TCG/TCB)
TCG¼�0.1603 � Blue � 0.2819 � Green �
0.4934 � Red þ 0.7940 � NIR � 0.0002 �
SWIR1� 0.1446 � SWIR2
TCB ¼ 0.2043 � Blue þ 0.4158 � Green þ
0.5524 � Red þ 0.5741 � NIR þ 0.3124 �
SWIR1þ 0.2303 � SWIR2

(Crist 1985; Powell et al. 2010)
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Assessment of the severity of the disturbance
Examination of the data revealed a linear association
between the dependent and independent variables.
The assumptions of normality of the residuals and
homoscedasticity were also fulfilled, it was deemed
that ordinary least square regression was the most
suitable and direct approach to create the disturbance-
specific severity assessment models. Linear regression
allowed modeling the severity of the disturbances as a
continuous variable and the creation of easy-to-inter-
pret models. A first group of candidate models was
created for each disturbance type and included the
delta metrics derived from either one or two vegeta-
tion indices, ensuring the Pearson R value remained
under 0.7 when multiple predictors were included. To
investigate the effect of the pre-disturbance stand con-
dition on the relationship between disturbance sever-
ity and changes in the canopy spectral reflectance, we
created a second group of candidate models that
included the basal area of the plot prior to the dis-
turbance as a covariate. Model selection based on
AICc was conducted separately for both disturbance
types but involved the same set of candidate models.
The number of available permanent sample plots was
deemed insufficient to split the data into training and
validation datasets. Therefore, all 47 plots that sus-
tained damage from the 1998 ice storm were used in
the development of the model dedicated to the assess-
ment of the damage to the canopy caused by the ice
storm, hereafter referred to as the ice storm model.
Likewise, all 46 plots that were harvested were used in
the development of the model dedicated to the assess-
ment of the basal area removal after partial harvesting,
hereafter referred to as the partial harvest model. The
normality of the residuals was verified graphically and
using the Shapiro-Wilk test, while the assumption of
homoscedasticity was verified using the Breusch-
Pagan Test.

Model application

To visualize the behavior of the disturbance-specific
models and how they can serve to illustrate the variabil-
ity in disturbance severity at both the landscape and
stand levels, we mapped the predicted damage from dis-
turbance events at specific locations within the study
area. The selected subsets of our study area are located
southwest of Lake Megantic in Southern
Quebec (Figure 2(a)). This area was affected by the
severe ice storm of 1998, and damage to the canopy
ranging from light to severe was confirmed over the
region by an aerial survey conducted in February

1998 (Chabot et al. 1998; Majcen et al. 1999). In the
same region, we also selected six adjacent stands total-
ing 373.4 ha, in which partial harvest operations were
conducted in 2020, after the end of the growing
season (Figure 2(b)).

Landsat composites representing the reference and
disturbance periods were created using the GEE
implementation of the best available pixel (BAP) com-
posite algorithm (White et al. 2014), allowing the cre-
ation of cloud-free, radiometrically and phenologically
consistent surface reflectance composites, which are
spatially contiguous over the targeted areas. As in the
model-development step, two composites were first
created for the two growing seasons preceding the dis-
turbances. These composites were averaged to create a
single composite representing the reference condition
of the forest. The reference composite used to assess
the severity of the damage caused by the ice storm of
1998, therefore, included pixels from the Landsat
scenes acquired in the growing seasons of 1996 and
1997. The reference composite for the assessment of
the basal area removal consecutively to the partial har-
vests included pixels from scenes acquired in the
growing seasons of 2019 and 2020. Disturbance com-
posites were created from scenes acquired in the
growing season of 1998 for the ice storm-affected
area, and 2021 for the harvested area. The vegetation
indices and their associated delta metrics included as
predictors in the ice storm and partial harvest models
were then calculated from the reference and disturb-
ance composites.

The ice storm model was applied to all broadleaved
dominated stands of the area that had not been harvested
in that same year. The sum of stands meeting these crite-
ria had a combined area of 3974.1 ha in the first applica-
tion subset. Using data from the forest inventory layer
and a one-meter digital elevation model, we analyzed
how the damage to the canopy predicted using the ice
storm model varied as a function of biophysical charac-
teristics such as the stand age, species composition, ele-
vation and slope aspect. Analyses of variance and
multiple comparisons with the Tukey honestly signifi-
cant difference (HSD) test were used to investigate for
statistically significant differences. The partial harvest
model was applied to the six stands harvested in 2020,
where the basal area removal levels ranged from 24% to
39% depending on the stand. Predictions from the model
were averaged at the stand level, using polygons from the
forest inventory layer, and compared to the post-harvest
inventory data included in the geospatial layer made
available by the landowner.
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Results

Attribution of the disturbance causal agent

Among the tested MLR candidate models for the attri-
bution of the disturbance causal agent, the most accur-
ate comprised the dNBR and dTCA as predictors
(Table 5). The model yielded an overall accuracy of
82.9% (Table 6). The lowest producer’s accuracy was
obtained for undisturbed plots while the highest was
obtained with the ice storm damage. A proportion of
22.0% of the undisturbed plots was misclassified as dis-
turbed, while only 13.3% of the ice storm-damaged
plots were misclassified either as undisturbed (11.1%)
or harvested (2.2%). The producer’s accuracy for the
harvested plots lay in between, with 15.6% of misclassi-
fied plots, either as undisturbed (6.7%) or damaged by
the ice storm (8.9%). The user’s accuracy values were
very similar for all three categories. A proportion of
17.0% of plots classified as undisturbed were actually
disturbed plots. A same proportion of 17.0% of the
plots classified as damaged by an ice storm was in real-
ity harvested (8.5%) or undisturbed (8.5%) plots and
17.4% of the plots classified as harvested were, in

reality, undisturbed plots (15.2%) or plots that had sus-
tained some level of damage from the ice storm (2.2%).

The confusion matrix is presented in Table 7, and
the individual effect of the predictors included in the
final model is shown in Figure 3. Pixels exhibiting a
high dNBR value, but only minor to no change in
TCA were identified as damaged from an ice storm,
while pixels exhibiting a moderate change in NBR but
a large variation in TCA were identified as harvested.
Pixels for which both dNBR and dTCA values were
small were identified as undisturbed.

Disturbance-specific models

Ice storm
The best-fit model among the tested candidates for
assessing the severity of the damage to the canopy
after the ice storm included two delta metrics, i.e., the
difference in Tasseled Cap Wetness (dTCW) and the
difference in the Green-Red Vegetation
Index (dGRVI). The selected model also included the

Table 7. Confusion matrix after applying the multinomial clas-
sification model.
Reference/prediction Control Harvest Ice storm

Control 39 3 5
Harvest 7 38 1
Ice storm 4 4 39

Table 5. Ranking of the candidate models for the assessment
of ice storm damage.
Model ID Model parameters AICc Di Mk Wti
2 dNBR1 dTCA 144.78 0.00 1.00 1.00
4 dTCWþ dTCA 183.49 38.72 0.00 0.00
7 dNBRþNDVI recovery 205.61 60.83 0.00 0.00
3 dGRVIþ dTCA 214.85 70.07 0.00 0.00
1 dNBRþ dGRVI 222.84 78.07 0.00 0.00
6 dNBRþGRVI recovery 223.87 79.09 0.00 0.00
9 dTCWþNDVI recovery 227.95 83.17 0.00 0.00
5 dTCWþ dGRVI 253.33 108.55 0.00 0.00
8 dGRVIþNDVI recovery 257.31 112.54 0.00 0.00
10 Intercept only 311.68 166.91 0.00 0.00

AICc is the Akaike Information Criteria, corrected for small sample sizes,
with deltaAICc (Di), model likelihood (Mk) and AICc weight (Wti).

Values in bold indicate the model and associated explanatory variables
that were retained after the model selection procedure

Figure 3. The individual effect of the predictors are included in the final disturbance classification model.

Table 6. Accuracy metrics and Kappa statistics for the selected
multinomial classification model.

Producer’s
accuracy (%)

User’s
accuracy (%)

Overall
accuracy (%) Kappa

Ice storm 86.7 83.0
Harvested 84.4 82.6 82.9 0.74
Undisturbed 78.0 83.0
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basal area of the plot prior to the disturbance as a
covariate (Table 8).

The model reached an r-squared value of 0.59, with
a root mean square error of 10.28. Estimates of the
model parameters are shown in Table 9, while model
predictions and unconditional 95% confidence inter-
vals for the best-fit model parameters are shown in
Figure 4. There was a positive relationship between
the Landsat-derived metrics and the predicted damage
to the canopy, and a higher basal area prior to the
disturbance tended to be associated with lower dam-
age for a given change in TCW and GRVI. High
dTCW values combined with high dGRVI values and
a low pre-disturbance basal area yielded the highest
predicted damage to the canopy. The actual versus
predicted damage to the canopy for the 47 plots used
in model development is presented in Figure 5a.

Model application – area damaged by the ice storm
of 1998
Although the basal area of the stand prior to the dis-
turbance was among the predictors retained in the ice
storm model, this information was not available in the
historical forest inventory layers available for the
study site. We, therefore, applied the predictions of
the third-ranked model, which included only the two
delta metrics from the best-fit model, and had a rela-
tively small difference in AICc (Di¼ 3.52) compared
to the first-ranked model (Figure 6). The median of
the predicted damage to the canopy over the area of
application of our model was 26.3% and 79.9% of pix-
els (3175.7 ha) were deemed to have sustained over
10% of damage to the canopy. The predicted damage
was lower than 50% in 90% of the area.

Within the model application area, young even-
aged stands exhibited a significantly lower (p< 0.0001)
average level of damage to the canopy than other
stand types. Stands that were harvested either by
clearcutting or strip cutting in the fifteen years prior
to the ice storm had a predicted average damage to
the canopy of 15.3% compared to 25.1% for other
stand types. Similarly, the analysis of variance con-
ducted over the area revealed that broadleaved-domi-
nated mixed stands sustained significantly (p< 0.001)
less damage than pure broadleaved stands during this
disturbance event, with predicted proportions of dam-
age to the canopy of 23.4 and 26.5%, respectively.
There was also a significant difference (p< 0.0001)
between the levels of damage predicted in stands at
lower altitudes (�500m, 23.1%) and stands located at
higher altitudes where predictions were high-
er (>500m, 29.4%). The slope aspect also had a signif-
icant (p< 0.001) effect on the level of damage as
stands sustained higher damage on slopes facing East
or South (29.1% and 28.4%, respectively) compared to
stands either on North (24.1%) or West (24.1%) facing
slopes.

Table 8. Ranking of the candidate models for the assessment
of ice storm damage.
Model ID Model parameters AICc Di Mk Wti
12 dTCW1 dGRVI1 Pre-disturbance BA 363.95 0.00 1.00 0.68
9 dNBRþ dGRVIþ Pre-disturbance BA 366.59 2.65 0.27 0.18
7 dTCWþ dGRVI 367.47 3.52 0.17 0.12
5 dNBRþ dGRVI 371.12 7.17 0.03 0.02
10 dNBRþ Pre-disturbance BA 379.83 15.88 0.00 0.00
3 dGRVI 380.28 16.33 0.00 0.00
1 dNBR 381.43 17.48 0.00 0.00
8 dTCWþ dGRVI 381.90 17.95 0.00 0.00
6 dNDVIþ dNBR 383.00 19.05 0.00 0.00
2 dNDVI 383.87 19.92 0.00 0.00
4 dTCW 386.14 22.20 0.00 0.00
11 dTCWþ Pre-disturbance BA 386.36 22.42 0.00 0.00
13 Intercept only 401.51 37.56 0.00 0.00

AICc is the Akaike Information Criteria, corrected for small sample sizes,
with deltaAICc (Di), model likelihood (Mk) and AICc weight (Wti).

Values in bold indicate the model and associated explanatory variables
that were retained after the model selection procedure.

Table 9. Estimates and standard error (SE) for the best-fit ice
storm model parameters.
Parameter Estimate SE

dTCW 0.048 0.012
dGRVI 280.71 51.18
Intercept 22.16 7.45

Figure 4. Model predictions and unconditional 95% confidence intervals for the best-fit model parameters for ice storm damage.
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Figure 5. (a) Actual versus predicted damage to the canopy of the 47 plots included in the development of the ice storm model
(b) Actual versus predicted basal area removal of the 46 plots included in the development of the partial harvest model. The solid
line represents the 1:1 relationship.

Figure 6. Predicted damage to canopy (%) consequently to the ice storm of 1998 over a subset of the study area.
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Partial harvest
Among the tested candidates, the best-fit model for
assessing the basal area removal from partial harvest
included a single predictor i.e., the change in NBR
value (dNBR, Table 10). The r-squared value of the
final partial harvest model was 0.57, with a root mean
square error of 5.76. Estimates of the model parame-
ters are shown in Table 11, and model predictions
and unconditional 95% confidence intervals for the
model parameters are presented in Figure 7.

There was a positive relationship between dNBR
and the harvested proportion of the basal area; the

removal of a greater proportion of the basal area
resulted in larger dNBR values. The actual versus pre-
dicted basal area removal for the 46 plots used in
model development is presented in Figure 5(b).

Model application – Area harvested in 2020
The selected partial harvest model was applied over
the harvest area composed of six different stands that
were harvested after the 2020 growing season
(Figure 8).

The actual levels of basal area removal ranged from
24.0% to 39.0%, while the predicted removal levels
ranged from 24.0% to 36.3% (Table 12). The absolute
prediction error ranged from 0.7% to 16.6% for five
stands out of six, but reached 38.5% in the case of
stand E, for a median error of 12.6%.

Discussion

Attribution of the disturbance causal agent

The two disturbances included in this study led to
contrasting changes in the canopy spectral reflectance.
Our results show that a combination of Landsat-
derived vegetation indices can help identify the causal
agent of a disturbance. The final MLR classification
model included two indices that are each associated
with different changes within the canopy. The dNBR
is increasingly used in disturbance detection algo-
rithms, such as LandTrendr (Kennedy et al. 2010) and
C2C (Hermosilla et al. 2015b) to detect both stand-
replacing and non-stand-replacing disturbances. For
the disturbance events investigated in the current
study, the average dNBR value was greater for plots
damaged by the ice storm than for harvested plots.
This observation highlights the importance of cor-
rectly identifying the nature of a disturbance before
assessing its severity. While the damage caused to
crowns by an ice storm can be considerable, its
impact on key ecological attributes, such as the
amount of living biomass, is not comparable to that
of a partial harvest where trees are removed from the
stand. The larger variation in NBR observed in plots
affected by the ice storm may be explained by the fun-
damentally different nature of the two types of dis-
turbance. In the case of partial harvest, operations are
usually conducted through a limited number of log-
ging trails in which the machinery operates. The basal
area removal is mainly concentrated within these
trails (Moreau et al. 2019), which can be occluded
from airborne observations by the crowns of the
residual trees. As the targeted basal area removal
increases, more trees are going to be harvested

Table 10. Ranking of the candidate models for the assess-
ment of basal area removal.
Model ID Model parameters AICc Di Mk Wti
1 dNBR 298.23 0.00 1.00 0.25
10 dNBRþ Pre-disturbance BA 299.04 0.81 0.67 0.17
5 dNBRþ dGRVI 299.50 1.26 0.53 0.13
12 dTCWþ dGRVIþ Pre-disturbance BA 299.51 1.28 0.53 0.13
8 dTCWþ dGRVI 300.20 1.97 0.37 0.09
6 dNDVIþ dNBR 300.28 2.05 0.36 0.09
9 dNBRþ dGRVIþ Pre-disturbance BA 300.41 2.17 0.34 0.08
11 dTCWþ Pre-disturbance BA 302.41 4.18 0.12 0.03
4 dTCW 303.11 4.88 0.09 0.02
7 dTCWþ dNDVI 304.98 6.75 0.03 0.01
2 dNDVI 324.34 26.11 0.00 0.00
3 dGRVI 326.65 28.42 0.00 0.00
13 Intercept only 336.25 38.02 0.00 0.00

AICc is the Akaike Information Criteria, corrected for small sample sizes,
with deltaAICc (Di), model likelihood (Mk) and AICc weight (Wti).

Values in bold indicate the model and associated explanatory variables
that were retained after the model selection procedure.

Table 11. Estimates and standard error (SE) for the best-fit
partial harvest model parameters.
Parameter Estimate SE

dNBR 141.65 18.03
Intercept 21.66 1.50

Figure 7. Model predictions and unconditional 95% confi-
dence intervals for the best-fit model parameter for partial
harvest.
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between the trails. The effect on the canopy spectral
reflectance varies locally and may be relatively subtle
at a 30m resolution (Franklin et al. 2001). While the
damage caused to the canopy after an ice storm is
also variable, the freezing rain is distributed uni-
formly, at least at the plot scale, and hits the upper
layer of the canopy first. Broken branches and the
associated decrease in leaf area index (LAI) may there-
fore be captured more easily through airborne obser-
vations than the effect of partial harvesting. Despite
this contrast between disturbance types, the range of
dNBR values of plots that were affected by the ice
storm (�0.01� dNBR �0.20) remained very similar to

that of plots that were harvested (�0.01� dNBR
�0.22). The inclusion of the dTCA in the model
allowed a better differentiation of the respective effects
of both disturbances. Indeed, the overlap in dTCA val-
ues between plots damaged by the ice storm
(�0.04� dTCA �0.02) and harvested plots (�0.01�
dTCA �0.14) was very small. The dTCA was signifi-
cantly higher (p< 0.0001) in harvested stands com-
pared to stands affected by the ice storm, while there
were no significant differences (p¼ 0.70) in dTCA
between the latter and the undamaged plots. These
results are in line with previous studies that used the
TCA as an estimator of living biomass and forest

Figure 8. Predicted basal area removal (%) over the area harvested in 2020 within the study site.

Table 12. Actual and predicted basal area removal for the stands within the cut block (area) harvested in 2020.
Stand ID Area (ha) Initial BA (m2 � ha) Final BA (m2 � ha) Actual BA removal (%) Predicted BA removal (%) Absolute error (%)

A 140.5 19.3 12.0 37.8 36.3 4.2
B 43.6 26.4 17.1 35.2 29.4 16.6
C 48.8 19.1 13.8 27.7 27.6 0.7
D 57.4 26.6 20.6 22.6 25.4 12.6
E 38.7 20.5 12.5 39.0 24.0 38.5
F 43.8 26.4 17.1 35.2 29.8 15.3
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cover density (Ahmed et al. 2014; G�omez et al. 2011;
Powell et al. 2010). Although an ice storm causes dam-
age to tree crowns, it does not affect the structure of a
stand in the way a partial harvest does.

Disturbance-specific models

The Landsat-derived indices included in the final dis-
turbance-specific models allowed assessing the severity
of both types of disturbances in a continuous manner
with a moderate proportion of the variance is
accounted for. The partial harvest model relied on the
dNBR as a single predictor. This index has been previ-
ously used to study partial harvesting in different
ecosystems (Jarron et al. 2017; Tortini et al. 2019) and
to monitor recovery following stand-replacing distur-
bances in boreal forests (Pickell et al. 2016; White
et al. 2018). Our results suggest this index is appropri-
ate to measure the intensity of partial harvests in
northern hardwood forests. The NBR is a normalized
difference of the Landsat near-infrared and second
shortwave-infrared bands. Photosynthetically active
vegetation shows a high reflectance in the near-infra-
red region compared to soil or non-photosynthetic
vegetation (Clevers 1988). Soil and non-photosynthetic
vegetation such as stems and branches show higher
reflectance in the shortwave infrared regions com-
pared to photosynthetically active vegetation, due to
fewer water absorption features (Asner 1998). Partial
harvest reduces the number of living trees and exposes
bare soil and dry wooden debris, increasing the spec-
tral reflectance in both the near-infrared and short-
wave infrared regions of the spectrum, resulting in
lower NBR as harvest proportion increases. It was
challenging to assess the intensity of harvests with less
than 30% of the basal area removed. At such low lev-
els of harvest, the intensity was generally overesti-
mated. This may be attributable to the presence of
harvest trails in which all trees are removed to allow
the machinery to circulate. In low-intensity partial
harvests, the removal of trees within trails can be suf-
ficient to reach the targeted basal area
removal (Moreau et al. 2019). The canopy opening in
logging trails may cause a substantial reduction in
NBR values compared to the pre-harvest conditions,
even at low levels of harvest. The additional removal
of trees between the trails in harvests of higher inten-
sity may produce more subtle variations in the index
value.

The first-ranked model for the assessment of can-
opy damage due to the ice storm included two
Landsat-derived indices i.e., the dTCW and dGRVI, in

addition to the pre-disturbance basal area of the
stand. The TCW was found to be a good indicator of
the structural attributes and development stage in
closed canopy forests (Cohen et al. 1995; Czerwinski
et al. 2014; Jin and Sader 2005), and is also used in
disturbance detection algorithms (e.g., LandTrendr,
Kennedy et al. 2010). When exploring the relation-
ships between the TCW and the structure of various
forest stands, Hansen et al. (2001) found that it was
strongly correlated to attributes such as crown closure,
average crown diameter and structural complexity, all
of which are likely to be altered in a stand damaged
by an ice storm.

The GRVI has been used as an indicator of sea-
sonal changes in foliage in broadleaved forests and is
considered an indicator of the photosynthetic rate of
the canopy (Motohka et al. 2010; Muraoka et al. 2013;
Yin et al. 2022). Its relevance for assessing damage to
crowns is in line with the effects of an ice storm on
the spectral reflectance of the canopy. Forest canopies
impacted by ice storms experience a reduction in LAI
that can last for up to two years after the event,
because of the physical damage caused to stems and
branches (Rhoads et al. 2002; Zarnovican 2002).
Photosynthetically active vegetation strongly absorbs
visible light and shows particularly strong absorption
features in the red region (Clevers 1988; Federer and
Tanner 1966). Damage to the canopy results in a
decrease in these strong absorption features, captured
in the red spectral reflectance band, and as a conse-
quent lowering of GRVI values. The relationship
between changes in LAI and spectral reflectance of
forest canopies in the red region has been observed in
several studies involving both satellite and aerial
imagery, some of which were conducted consecutively
to ice storms (King et al. 2005; Nemani et al. 1993;
Pellikka et al. 2000; Rautiainen 2005).

Influence of the pre-disturbance basal area
The basal area of the stands prior to the disturbance
influenced the relationships between the severity of
the disturbance and the Landsat-derived metrics only
in the case of ice storm damage. For the same level of
damage to the canopy measured on the ground,
dTCW and dGRVI values were higher in stands with
a higher pre-disturbance basal area. The steeper rela-
tionship between the delta indices and the damage to
crowns could be attributable to a more complex verti-
cal structure in stands of high basal area. During an
ice storm, the larger trees, which form the top layer of
the canopy, are generally the most damaged (King
et al. 2005; Rhoads et al. 2002). Therefore, the nature
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of satellite-based vegetation indices, which are mainly
focused on the upper layer in closed-canopy forests,
could cause an overestimation of the damage, while
trees in the lower layers, less visible from airborne
observation, are likely to have sustained less damage.

Model application

Using disturbance-specific models to map the inten-
sity of ice storm damage and partial harvesting over a
subset of the study area revealed within-stand variabil-
ity in both the damage to the canopy and harvest
intensity. Consecutively to an ice storm, different lev-
els of damage to the canopy may require specific silvi-
cultural actions to restore the health and vigor of the
stands and to account for the changes in the light
regime caused by the disturbance. In severely dam-
aged stands, salvage harvesting operations may be
required to prevent losses due to mortality or
degradation (Boulet et al. 2000; Bragg et al. 2003).
Information on damage to the canopy at this reso-
lution would therefore be useful in planning such
interventions without the need to deploy a costly,
time-consuming field sampling assessment. The appli-
cation of the ice storm model over a large area
allowed concluding significant correlations between
biophysical variables and the level of damage to the
canopy. In the case study dedicated to the ice storm
event, young even-aged stands were less affected than
older stands, which is in line with previous findings
concluding that even-aged stands in northern hard-
wood forests are at low risk of damage from ice
storms until they reach an age of 15–20 years (Pellikka
et al. 2000; Rhoads et al. 2002). A comparison of the
level of damage sustained by pure broadleaved stands
compared to stands composed of a proportion of
conifers revealed significant differences between the
two groups, which is also consistent with findings
from previous studies on the subject (Millward and
Kraft 2004; Van Dyke 1999). The higher level of dam-
age to the canopy for stands located at a higher eleva-
tion and the differences in damage between stands
located on slopes facing different directions also
agrees with what was found by other authors (Isaacs
et al. 2014; King et al. 2005; Rhoads et al. 2002).

Regarding the application of the partial harvest
model, the predicted basal area removal level was in
general consistent with data from field inventories
conducted consecutively to the harvest operations,
with a median absolute error of 12.6%. Overall, the
proportion of the basal area harvested tended to be
slightly underestimated, although this was mainly the

case for one stand in which the difference between
the predicted and actual level of the harvest was quite
large. An indication that the model allowed a repre-
sentative visualization of the variability of basal area
removal within and between stands comes from the
fact that Figure 8 showed a clear distinction between
the silvicultural treatments that were applied in the
harvest area. The higher level of variability of harvest
levels in stand A, for example, was the result of a
form of salvage logging, which aimed to recover
unhealthy stems in a depleted stand. This resulted in
higher spatial variability in basal area removal com-
pared to other stands, which were all subjected to
selection cuts characterized by a more uniform basal
area removal to favor shade-tolerant species (Leak
et al. 2014; Nyland 1998).

Limitations and needs for future research

The study of non-stand replacing disturbances
through remote sensing remains at its early stages,
especially in broadleaved forests where most of the
previous work has focused on a single disturbance
agent. The current study proposes a hurdle approach
in which disturbances are first detected and attributed
to a causal agent using MLR before disturbance-
specific linear models are used to estimate the severity
of the disturbance as a continuous variable. Although
the decision to model severity as a continuous variable
has the advantage of revealing fine spatial variability
in the severity of the disturbances, the proposed dis-
turbance-specific models only explained a moderate
proportion of the variance. Addressing some of the
limitations raised in this section could help increase
our ability to estimate more accurately the level of
change caused to forest ecosystems by non-stand
replacing disturbances and to attribute their causal
agents.

The range in severity of the disturbance events
included in the current study was dictated by the
occurrence of such events during the study period
and the availability of data from the permanent sam-
ple plots. Conclusions on the accuracy of the
approach used to attribute the causal agent to the
disturbances are therefore only applicable considering
the specific distribution of severity among the distur-
bances included in the sample. Likewise, the establish-
ment of a threshold for detectability of damage to the
canopy or basal area removal using the MLR model
falls beyond the scope of the current study. Additional
work is needed to identify such a threshold and how
it may vary between different types of disturbances.
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The relevance of a severity threshold should also be
investigated in the case of disturbance-specific models,
especially for partial harvests, for which the intensity
was challenging to assess accurately when the BA
removal was low.

While only two types of non-stand replacing dis-
turbances were included in the current study, north-
ern hardwood forests are subjected to other types of
small- to moderate-scale disturbances from various
causal agents such as insects and wind. The detectabil-
ity of these disturbances and the possibility to distin-
guish their effect on the spectral reflectance of the
canopy using the limited set of vegetation indices
tested in this study needs to be investigated. The suc-
cess of such an undertaking is likely influenced by the
time of the year when the disturbance occurs. In the
context of the present study, this is especially relevant
for the partial harvest. Operations conducted during
the winter on a snow cover may preserve the under-
story vegetation, which will benefit from the opening
of the canopy and proliferate during the following
growing season. Changes to the spectral reflectance of
the canopy consecutively to such harvests may be
more subtle than for harvests conducted within the
growing season, for which the bare soil is more likely
to be exposed by the circulation of the
machinery (Wolf et al. 2008).

Our results have also shown that, in the case of an
ice storm, the condition of the stands prior to the dis-
turbance must be considered in the estimation of the
damage caused to the canopy. There is a need to fur-
ther investigate how this affects the accuracy of meth-
ods used to study non-stand replacing disturbances
using satellite imagery and to better understand how
it may vary among causal agents and forest types. To
that extent, the retrospective estimation of forest
structural attributes including basal area using Landsat
time series in combination with other remote sensing
tools (e.g., Matasci et al. 2018), appears promising,
since it could provide valuable information on initial
stand conditions when there is a lack of historical
field inventory data.

Conclusions

Results from the current study confirm the feasibility
and relevance of using Landsat-derived vegetation
indices to discriminate between two different types of
non-stand replacing disturbances in northern hard-
wood forests and assess their severity. Using a com-
bination of vegetation indices allowed capturing
differences in the effects of two non-stand replacing

disturbances on the spectral reflectance of the canopy.
Our results confirmed the importance of identifying
the causal agent before assessing the severity of a dis-
turbance. For instance, the range of dNBR, one of the
most commonly used metrics in disturbance detec-
tion, was very similar for plots that sustained damage
after an ice storm and plots that were harvested. Yet,
the effects of these two disturbances on the ecosystem
dynamics are contrasting, both in their persistence
and in severity. The different effects of ice storms and
partial harvests on the spectral reflectance of the can-
opy have translated into the inclusion of a distinct set
of predictors in the disturbance-specific severity
assessment models. The application of these models
over a subset of the study allowed for generating
information on the spatial variability of the disturban-
ces at a finer resolution than what is generally avail-
able to forest practitioners. This information could be
useful in the planning and application of adapted
silvicultural practices.
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