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Abstract17

Climate change has driven forest growth modellers to develop different climate sen-18

sitivity implementations (CSI) for their models. Among others, a model can rely on19

annual climate variables or average climate variables, such as 30-year normals. The20

novelty of this study was to develop a framework based on lifetime analysis to enable21

annual or average CSI in empirical models of tree mortality. Using this framework,22

we compared models of individual tree mortality based on an annual CSI with similar23

models relying on two average CSIs, one using interval-averaged climate variables, and24

the other, 30-year normals. We fitted these models to permanent-plot data of eight25

species in Ontario and tested the effects of summer and winter temperature as well as26

spring and summer precipitation in the models.27

Our results showed that the annual CSI was not superior to the average CSIs, but28

could be a valid alternative for some species. Warmer winter temperature was detri-29

mental to the survival of Betula papyrifera, Picea glauca, and Pinus strobus, whereas30

greater spring and summer precipitation resulted in greater mortality occurrence for31

Picea mariana, Pinus banksiana, and Populus tremuloides. In most cases, the effects32

of climate variables were contrary to our initial hypotheses. We conclude that the ef-33

fects of climate on tree mortality occurrence interact with other factors such as species34

distribution and ecophysiology.35

Keywords. Lifetime analysis; Individual tree mortality; Climate sensitivity; Temperature;36

Precipitation; Hazard function37
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1 Introduction38

Over the last two decades, forest growth modellers have strived to make their models climate39

sensitive in order to better predict the impacts of climate change. Whether they are empirical,40

process-based, or hybrid, many forest growth models now have a certain degree of sensitivity41

to climate. In North America for instance, a climate-sensitive version of the Forest Vegetation42

Simulator (FVS) is now available (Crookston et al., 2010) and the Mixedwood Growth Model43

(MGM) used in western Canada has climate-sensitive components of mortality and diameter44

increment (Cortini et al., 2017; Oboite and Comeau, 2021).45

Metsaranta et al. (2024) defined four levels of climate sensitivity implementation (CSI)46

in forest growth models used in Canada:47

1. No climate sensitivity, which assumes climate remains approximately equivalent to what48

it was in the data used to fit the model;49

2. An indirect CSI through an explanatory variable, typically a climate-sensitive site index50

(e.g., Crookston et al., 2010; Sharma, 2021);51

3. An average CSI, when some model components include 30-year normals or interval-52

averaged climate variables in their equations (e.g., Cortini et al., 2017; Fortin et al.,53

2023);54

4. An annual CSI, when some model components include annual or intra-annual climate55

variables (e.g., Larocque et al., 2011).56

The same authors found that many empirical forest growth models in Canada benefit from57

an indirect or average CSI, but none of them implements annual climate variables. This is58

surprising given the fact that most of these Canadian models predict growth on an annual59

basis (Metsaranta et al., 2024).60

Typically, empirical forest growth models are fitted to permanent-plot data. However,61

permanent plots are rarely remeasured on an annual basis; remeasurements are usually car-62
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ried out on longer, and often irregular, time intervals, ranging from 5 to 15 years. The63

repeated measurements of trees provide the information to model the basic components of64

stand growth: mortality, survivor growth, and ingrowth (Vanclay, 1994, p. 9). For each65

one of these three components, the response variable can be annualized (e.g., Li et al., 2011;66

Cortini et al., 2017; Oboite and Comeau, 2021). However, the climate variables that have67

an effect on tree mortality, survivor growth, and ingrowth can hardly be expressed on an68

annual basis in regular statistical regression. As a matter of fact, this is only possible when69

the remeasurement interval is strictly regular across the plots, e.g., every 5 years. It then70

requires a parameter for each combination of climate variable and year, which increases the71

complexity of the model.72

In practice, irregular remeasurement intervals imply that most empirical modellers have73

to implement climate sensitivity in their models through variables depicting the average74

climate, such as 30-year normals (Cortini et al., 2017) or interval-averaged climate variables75

(Fortin et al., 2023). However, the fact that average climate variables can hide extreme76

annual values cannot be overlooked (Oboite and Comeau, 2021). There could be a gain,77

both in model fit and biological realism, to consider annual climate variables in empirical78

forest growth models.79

One component of growth models that can be expected to be climate sensitive is the80

mortality part. In most studies on the topic, mortality is modelled using logistic regression81

(e.g., Pretzsch et al., 2002; Dietze and Moorcroft, 2011; Cortini et al., 2017). While logis-82

tic regression can adapt to irregular remeasurement intervals, it cannot account for annual83

climate variables measured within these irregular intervals, since the number of model pa-84

rameters would vary across the observations.85

Statistical models designed for the analysis of lifetime data are also meant to predict86

the probability of occurrence of a particular phenomenon. Unlike logistic regression, life-87

time models use the concept of hazard accumulation over time (Lawless, 2003). In forest88

growth modelling, there are a few examples of lifetime models applied to tree mortality89
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(e.g., Rose et al., 2006; Fortin et al., 2008; Hämäläinen et al., 2016; Neumann et al., 2017;90

Maringer et al., 2021). The hazard accumulation is done through a hazard function (Lawless,91

2003, p. 10), which allows for time-varying explanatory variables. This hazard function could92

be the entry point of annual climate variables in a model of tree mortality. Interestingly, to93

the best of our knowledge, this approach has never been tested.94

The main objective of this paper was to develop a framework based on lifetime analysis95

and to compare the performance of different CSIs in tree mortality models. Our hypothesis96

was that (H1) an annual CSI in empirical tree mortality models would provide a better97

fit compared with an average CSI based on 30-year normals or interval-averaged climate98

variables. To test this hypothesis, we fitted mortality models to eight major tree species in99

the province of Ontario, Canada.100

A secondary objective was to improve our understanding of climate impacts on tree101

mortality in boreal and temperate forests in eastern Canada. Warm temperatures are known102

to affect the water balance of trees during the growing season and can eventually lead to103

greater mortality occurrence (Hartmann et al., 2022). However, warmer winter temperatures104

could be beneficial if cold is a limiting factor. For instance, Neumann et al. (2017) showed105

that warmer winter temperatures of the previous year were beneficial to the survival of106

European tree species in general. From a growth perspective, Huang et al. (2010) showed107

that radial growth of a few Canadian boreal tree species was greater after warmer winters.108

Consequently, we hypothesized that (H2) warmer summer temperatures are detrimental to109

tree survival, but that (H3) warmer winter temperatures favour tree survival. Precipitation110

increases the water availability and therefore, it contributes to the water balance of trees111

(Hember et al., 2017). Therefore, we also hypothesized that (H4) lower spring or summer112

precipitation is detrimental to tree survival.113
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2 Material and Methods114

2.1 Statistical developments115

Tree mortality can be modelled through a lifetime analysis approach, which is largely de-116

scribed in Lawless (2003). Let T be a random variable representing the exact time of death117

of an individual. The probability that this individual is dead at time t is F (t) = Pr(T ≤ t).118

Equivalently, the probability that a tree survives until time t is the balance of probability,119

which is referred to as the survivor function S(t) = 1−F (t). The hazard function h(w), which120

is a fundamental concept of lifetime models, represents the instantaneous rate of mortality121

at time w. It is linked to the survivor function as follows:122

S(t) = e−H(t) = e−
∫ t
0 h(w)dw (1)

where H(t) is the cumulative hazard up to time t. It is assumed that h(w) ≥ 0 and con-123

sequently, H(t) ≥ 0. In the case of discrete time steps, the cumulative hazard can be124

re-expressed as H(t) =
∑t

w=0 h(w) (Lawless, 2003, p. 11).125

When mortality is observed through the remeasurements of permanent plots, the data126

are said to be interval censored (Lawless, 2003, p. 65). More specifically, it means that the127

exact time of death remains unknown. If the tree was initially alive at measurement t1 but128

dead at measurement t2, we know that t1 < T ≤ t2. If the tree survived, then T > t2. The129

probability that a tree survives over the interval given that it had already survived until the130

beginning of the interval is S(t2)/S(t1). If we define the event E as the death of the tree, the131

probability that E occurs is simply the balance of probability:132

Pr(E | t1, t2) = 1− S(t2)

S(t1)
= 1− e−H(t2)

e−H(t1)
= 1− e−∆H(t1,t2) (2)

where ∆H(t1, t2) is the difference in cumulative hazard, i.e. ∆H(t1, t2) =
∑t2

w=t1+1 h(w) in133

the context of discrete time steps. The hazard function h(w) can be defined in many ways.134
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One of them is the proportional hazard model, also commonly referred to as the Cox model135

(Cox, 1972; Kalbfleisch and Schaubel, 2023), in which the hazard function is divided into two136

components:137

h(w | x) = h0(w)e
xβ (3)

where h0(w) is the baseline hazard at time w and exβ is the proportional part of the model.138

This proportional part includes a row vector of explanatory variables (x) and a column139

vector of parameters (β). Using this proportional hazard, the difference in cumulative hazard140

becomes:141

∆H(t1, t2) = exβ
t2∑

w=t1+1

h0(w) (4)

If we assume a constant hazard, i.e. h0(w) = eα0 , the difference in cumulative hazard shown142

in Eq. 4 reduces to:143

∆H(t1, t2) = exβ+α0+ln(∆t) (5)

where ∆t = t2 − t1. The model shown in Eq. 2 with its difference in cumulative hazard as in144

Eq. 5 is a logistic model using a complementary log-log link function (McCullagh and Nelder,145

1989, p. 31) and the offset variable ln(∆t). An offset is defined as a variable whose associated146

parameter is assumed to be equal to 1 (McCullagh and Nelder, 1989, p. 206). With the147

parameterization shown in Eq. 5, the offset variable ln(∆t) is equivalent to assuming that148

e−exβ+α0 stands for the annual mortality rate, which remains constant over the interval [t1 +149

1, t2] (Fortin et al., 2008).150

The constant hazard in Eq. 5 is a single parameter, but it could also be a function of151

average climate variables such that:152

∆H(t1, t2) = exβ+z̄α+ln(∆t) (6)
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where z̄ typically contains 30-year normals or interval-averaged climate variables, i.e. z̄ =153 ∑t2
w=t1+1 zw

t2−t1
, and zw = (1, zw,1, zw,2, . . .) with the zw,l being the different climate variables154

measured at time w, and α is a column vector of parameters, such that α = (α0, α1, α2, . . .)
T.155

In contrast to Eq. 6, it can be assumed that the hazard is not constant, such that h0(w) =156

ezwα. Therefore, the difference in cumulative hazard shown in Eq. 4 can be re-expressed as:157

∆H(t1, t2) = exβ
t2∑

w=t1+1

ezwα (7)

Basically, the differences in cumulative hazard shown in Eqs 6 and 7 provide the framework158

to test whether an annual CSI leads to a better fit than an average CSI for the same vector159

of responses and the same explanatory variables in x and in the z vectors (zw or z̄). These160

models can be fitted using the maximum likelihood method. In case of hierarchical structure,161

a random effect (u) can be added to the product xβ in both models under the assumption162

that u ∼ N (0, σ2
u). The NLMIXED procedure in SAS (SAS Institute Inc., 2023) allows for163

the fit of such models. A code sample can be found in Section S1 of the Supplementary164

Material.165

Because the random effect does not enter linearly in the model, the predictions condi-166

tional on the mode of the random effect distribution are not population-averaged predictions167

(McCulloch et al., 2008, p. 190; Fortin, 2013; Melo et al., 2017). Considering the annual CSI168

shown in Eq. 7, population-averaged predictions are obtained through the integration of the169

conditional probabilities over the distribution of the random effect as follows:170

Pr(E | t1, t2) = 1− Eu

[
e−exβ+u

∑t2
w=t1+1 e

zwα
]

= 1−
∫ ∞

−∞
e−exβ+u

∑t2
w=t1+1 e

zwα

pdf(u)du (8)

where pdf(u) is the density of u calculated from the normal distribution N (0, σ2
u). Since σ

2
u is171

unknown, it is replaced by its estimate. The integral shown in Eq. 8 has no closed form, but172
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it can be approximated using Gauss-Hermite quadrature (e.g., Pinheiro and Bates, 1995).173

The method is described in details in Fortin (2013). The same rationale applies to the174

mixed-effects version of the average CSI shown in Eq. 6.175

2.2 Data176

The data we used come from the Forest Growth and Yield program of the Ontario Ministry177

of Natural Resources (MNR), which aims at monitoring forest stand dynamics through a178

network of permanent plots in managed and unmanaged forests across the province (MNRF,179

2023). This network includes two types of plots: permanent growth plot (PGP) and perma-180

nent sample plot (PSP). A PGP is a single growth plot of area ranging from 400 to 1000 m2.181

In contrast, a PSP consists of a cluster of three 400-m2 plots. Henceforth, terms “plot” and182

“cluster” will be used to refer to a single growth plot and a group of plots, respectively. In183

this context, a PGP is considered as a cluster of one plot. In these plots, all trees with184

diameter at breast height (DBH, measured at 1.3 m height) greater than or equal to 2.5 cm185

are tagged and measured.186

The first measurements were taken in 1961 and the latest in 2022. We selected all the187

plots that had been measured at least twice. For each plot, the successive measurements were188

paired to create non overlapping intervals. The first measurement of each pair provided the189

initial conditions for each tree that was measured, whereas the second measurement confirmed190

whether these individuals had survived or died during the interval. These intervals based on191

individual tree remeasurements were the observations to which our mortality models were192

fitted.193

The current inventory protocol specifies the tagging of trees as small as 2.5 cm in DBH.194

However, early versions of the protocol used different thresholds so that there was a great195

deal of missing observations for smaller trees. In contrast, the monitoring of merchantable196

trees, those with DBH ≥ 9.1 cm, was more reliable. Consequently, we used only merchantable197

trees in our analysis.198
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There was some variability in the interval duration which ranged from 1 to 29 years, with199

a median of 5 years. As trees grow and die, the initial conditions of an interval become less200

representative of the average conditions during that interval. For this reason, we discarded201

intervals that were longer than 10 years. We gathered these non overlapping intervals for eight202

commercial species in Ontario, which were among the most abundant ones in the original203

data: Abies balsamea Mill., Acer saccharum Marsh., Betula papyrifera Marsh., Picea glauca204

(Moench) Voss., Picea mariana BSP, Pinus banksiana Lamb., Pinus strobus L. and Populus205

tremuloides Michx. A summary of the dataset can be found in Table 1. The distribution of206

the plots with at least one merchantable tree of these species is shown in Figure 1.207

(Insert Table 1 here)208

(Insert Figure 1 here)209

We retrieved the climate variables using the BioSIM application. BioSIM is a weather210

generator that spatially interpolates the meteorological time series at any geographical lo-211

cation from those observed in the nearest weather stations (Régnière et al., 1995, 2017).212

BioSIM is available as a Web API with an R client that facilitates the access to these inter-213

polated meteorological time series as well as climate forecasts under different climate scenarios214

(Fortin et al., 2022).215

More specifically, we used the Web API of BioSIM to retrieve the annual climate variables216

that were linked to our hypotheses H2, H3, and H4: mean temperature from June to August217

(◦C), mean minimum January temperature (◦C), total precipitation from March to May218

(mm), and total precipitation from June to August (mm). From these annual values, we also219

computed the average of each variable over the remeasurement intervals. These averages are220

the interval-averaged climate variables we referred to in the previous sections of this paper.221

BioSIM can also provide normals of these variables for different 30-year periods: 1951-222

1980, 1961-1990, 1971-2000, 1981-2010, and 1991-2020. For each interval, we selected the223

30-year period whose median was the closest to the median of the interval. For instance, the224
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1981-2010 normals would be retained for an interval covering the period 1993-1999, and so on.225

A summary of the 30-year normals observed in the dataset is shown in Table 2. To provide226

a better idea of the mean annual temperature and total annual precipitation in Ontario, the227

30-year normals based on the 1981-2010 period are illustrated in Figure 2.228

(Insert Table 2 here)229

(Insert Figure 2 here)230

For further information on the climate variables, the reader is referred to the Supplemen-231

tary Material, which contains summaries of the interval-averaged climate variables (Section232

S2) and the annual climate variables (Section S3). The mean variances of the annual climate233

variables can also be found in Section S4.234

2.3 Mortality modelling235

We tested the general model (Eq. 2) with different parametrizations for the difference in236

cumulative hazard (∆H(t1, t2)). We first tested a null model (MNUL), that included a single237

parameter and no covariates:238

MNUL : ∆H(t1, t2) = eα0 (9)

We then tested the constant-hazard model (Eq. 5) with plot and tree-level variables. After239

some preliminary trials, the following basic model (MBAS) was selected:240

MBAS : ∆H(t1, t2) = eα0+ln(∆t)+β1DBH+β2DBH2+β3BAL+β4Harvest+β5DBH·BAL (10)

where BAL is the basal area of trees with DBH larger than that of the subject tree (m2ha−1),241

and Harvest is a dummy variable that accounts for the occurrence of harvesting during242

the interval. We kept a particular effect or interaction in the model only if its associated243

parameter was significantly different from 0 at a probability level of 0.05. The only exceptions244
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to this rule were parameters α0 and β1. Parameter α0 was kept in the model whether it was245

significant or not because it stands for the basic hazard and we could not assume that this246

basic hazard was null. Likewise, parameter β1 was kept in the model whether it was significant247

or not whenever β2 was significantly different from 0 in accordance with the recommendation248

of Draper and Smith (1998, p. 266) on polynomial models.249

As suggested in Fortin et al. (2019), we used average Pearson residuals to check whether250

the effects of the explanatory variables were properly taken into account in the model. The251

observations are split into groups that correspond to even classes of a particular explanatory252

variable. Then, the average Pearson residual for class k (rk) of the explanatory variable can253

be calculated as:254

rk =
pk − ¯̂π√

¯̂π(1− ¯̂π)/nk

(11)

where pk is the proportion of dead trees in the observations of class k, ¯̂π is the average of the255

model predictions, and nk is the number of observations in class k. Under the assumption256

that the model is correct, the product nkpk approximately follows a binomial distribution257

with mean nk
¯̂π. If nk is large, then the distribution of pk is approximately normal with mean258

¯̂π and variance ¯̂π(1− ¯̂π)/nk, so that rk approximately follows a standard normal distribution259

(McCullagh and Nelder, 1989, p. 104). When plotting average Pearson residuals against260

classes of a particular explanatory variable, it is expected that these residuals are close to261

0 and do not exhibit any linear or quadratic patterns. With a little algebra, it can be262

shown that the sum
∑

k r
2
k is equivalent to the Hosmer-Lemeshow goodness-of-fit statistics263

(Hosmer and Lemeshow, 2000, p. 148).264

Given the hierarchical structure of the data, the existence of plot or cluster random effects265

could be reasonably assumed. The implementation of the models in the NLMIXED procedure266

(SAS Institute Inc., 2023) allows the specification of random effects. Consequently, we tested267

a mixed-effects model (MMIX) by adding a cluster random effect in the basic model (MBAS).268

Building on this mixed-effects model, we alternately tested 30-year normals, interval-269
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averaged climate variables, and annual climate variables, leading to models MNOR, MINT,270

andMANN, respectively. For each implementation, we tested the four climate variables: mean271

temperature from June to August, mean minimum January temperature, total precipitation272

from March to May, and total precipitation from June to August. In cases of persistent273

quadratic patterns in the average Pearson residuals, the squares of these variables were also274

tested in the models.275

For each species, we compared the models through the well-known Bayesian Information276

Criterion (BIC) (Pinheiro and Bates, 2000, p. 83). The BIC is calculated from the model log-277

likelihood. Provided a set of candidate models fitted to the same vector of response variables,278

the model with the smallest BIC value is considered as being the most parsimonious one,279

that is the model exhibiting the best trade-off between model precision and simplicity.280

There is no doubt that the BIC is helpful in selecting the most parsimonious model, but281

it may happen that the difference in BIC is not enough to clearly rule out some candidate282

models. Burnham and Anderson (2002, p. 302) used the BIC to determine the Bayesian283

posterior model probabilities under the assumption of equal prior model probabilities:284

Pr(Mi) =
e−

1
2
∆BICi∑

m e−
1
2
∆BICm

(12)

where ∆BICi and ∆BICm are the differences between the BIC of model Mi or Mm and the285

BIC of the “best” model. Note that there are five candidate models: MNUL, MBAS, MNOR,286

MINT, and MANN. Consequently, the indices i,m ∈ (1, 2, 3, 4, 5). A probability close to287

1 for the “best” model indicates that the other candidate models can be ruled out. These288

Bayesian posterior probabilities were calculated for the candidate models of each species.289

We also checked the goodness of fit of the candidate models using the area under the290

receiver operating characteristic (ROC) curve. The area under the ROC curve (AUC) has291

been widely used to evaluate a model’s ability to discriminate positive and negative outcomes292

(Lasko et al., 2005). In the context of this study, a positive outcome means mortality, whereas293

survival can be interpreted as a negative outcome. Let us assume the existence of a cutpoint294
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c and classify all the observations with model predictions larger than c as positive outcomes.295

The sensitivity of a model is defined as the ratio of correctly classified positive outcomes296

to the observed number of positive outcomes. Likewise, model specificity is the correctly297

classified negative outcomes to the observed number of negative outcomes. Plotting model298

sensitivity against one minus the model specificity for the whole range 0 < c < 1 yields the299

ROC curve. In other words, the ROC curve provides the sensitivity and specificity for all300

possible cutpoints. The AUC is simply the area under this curve. Hosmer and Lemeshow301

(2000) suggested the following rule of thumb: an AUC = 0.5 means no discrimination; 0.7 ≤302

AUC < 0.8 is considered acceptable discrimination; 0.8 ≤ AUC < 0.9 is considered excellent303

discrimination and AUC ≥ 0.9 is considered outstanding discrimination. The authors did304

not make any statement regarding models with AUC values smaller than 0.7, but following305

their rule of thumb, we can consider them as having a poor discrimination capacity.306

3 Results307

BIC values, Bayesian posterior model probabilities, and AUC values of the different models308

are shown in Table 3. For all species, the specification of a cluster random effect greatly309

improved the model fit as indicated by the sharp decrease in BIC. Adding climate variables310

in addition to the cluster random effect allowed to further improve the fit of the models. For311

seven out of eight species, the most parsimonious model included cluster random effects and312

either 30-year normals (MNOR) or interval-averaged climate variables (MINT). Picea mariana313

was the only species for which the most parsimonious model included cluster random effects314

and annual climate variables (MANN).315

(Insert Table 3 here)316

For six species, the Bayesian posterior probability of the most parsimonious model was317

close to 1 indicating that other candidate models were no valid alternatives (Table 3). For Pi-318
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nus strobus, the models based on either 30-year normals (MNOR) or annual climate variables319

(MANN) could be considered as valid alternatives to the model based on interval-averaged320

climate variables (MINT). For Populus tremuloides, the model using annual climate variables321

had a Bayesian posterior probability of 0.23 and therefore, it could also be considered as an322

alternative to model based on interval-averaged climate variables.323

Regarding the AUC values, only the most parsimonious models of Acer saccharum, Picea324

glauca, Pinus banksiana, and Pinus strobus showed an acceptable discrimination following325

Hosmer and Lemeshow’s rule of thumb (i.e. 0.7 ≤ AUC < 0.8). The most parsimonious326

models of the other four species had AUC values between 0.63 and 0.68. For each species,327

the form of the most parsimonious model was:328

for Abies balsamea,329

MINT : ∆H(t1, t2) = eβ1DBH+β3BAL+β4Harvest+β5DBH·BAL+u+α0+α2TminJ+α3T
2
minJ+ln(∆t)

330

for Acer saccharum,331

MNOR : ∆H(t1, t2) = eβ1DBH+β2DBH2+β3BAL+β4Harvest+β5DBH·BAL+u+α0+α1TJJA+α2TminJ+ln(∆t)
332

for Betula papyrifera,333

MNOR : ∆H(t1, t2) = eβ1DBH+β2DBH2+β3BAL+β4Harvest+u+α0+α2TminJ+ln(∆t)
334

for Picea glauca,335

MNOR : ∆H(t1, t2) = eβ1DBH+β3BAL+β4Harvest+β5DBH·BAL+u+α0+α2TminJ+ln(∆t)
336

for Picea mariana,337

MANN : ∆H(t1, t2) = eβ1DBH+β3BAL+β4Harvest+β5DBH·BAL+u
∑t2

w=t1+1 e
α0+α5PJJA,w338

for Pinus banksiana,339

MNOR : ∆H(t1, t2) = eβ1DBH+β3BAL+β5DBH·BAL+u+α0+α5PJJA+ln(∆t)
340

for Pinus strobus,341

MINT : ∆H(t1, t2) = eβ1DBH+β2DBH2+β3BAL+β4Harvest+u+α0+α2TminJ+ln(∆t)
342

for Populus tremuloides,343

MINT : ∆H(t1, t2) = eβ1DBH+β2DBH2+β3BAL+β4Harvest+β5DBH·BAL+u+α0+α1TJJA+α4PMAM+ln(∆t)
344

where TJJA is the mean temperature from June to August (◦C), TminJ is the mean minimum345
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January temperature (◦C), PMAM is the total precipitation from March to May (mm), and346

PJJA is the total precipitation from June to August (mm). In the models MNOR, MINT and347

MANN, these symbols stand for the 30-year normals, the interval-averaged and the annual348

values, respectively. The parameter estimates of these models can be found in Table 4.349

Graphs showing average Pearson residuals against classes of DBH, BAL, and the climate350

variables are available in Section S5 of the Supplementary Material (Figures S1-S8).351

(Insert Table 4 here)352

To illustrate the effects of the climate variables, population-averaged predictions of mor-353

tality probabilities were produced using Gauss-Hermite quadrature to account for the cluster354

random effect (Figure 3). Mean temperature from June to August was found to have a355

significant effect in the models of Acer saccharum and Populus tremuloides. However, the re-356

sults were divergent: warmer temperatures for these months induced an increase in mortality357

occurrence for Populus tremuloides, but a decrease for Acer saccharum (Figure 3a). Mean358

minimum January temperature had a significant effect in the models of five species: Abies359

balsamea, Acer saccharum, Betula papyrifera, Picea glauca, and Pinus strobus (Figure 3b).360

Warmer temperatures resulted in an increase of mortality occurrence for all species, except361

for Acer saccharum. It was noteworthy that the effect of this climate variable had a quadratic362

pattern in the model of Abies balsamea, with -21◦C being the optimal mean minimum Jan-363

uary temperature for survival. As for the total precipitation from March to May and from364

June to August, it was found to have a significant effect in the models of Picea mariana,365

Pinus banksiana, and Populus tremuloides (Figure 3c,d). Greater precipitation resulted in366

an increase of mortality occurrence for all three species.367

(Insert Figure 3 here)368

The effects of DBH, basal area of larger trees, and harvest occurrence are illustrated in369

Figures 4 and 5. The effect of DBH differed across the species. Abies balsamea, Picea glauca,370
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Picea mariana, and Pinus banksiana showed an increase of mortality occurrence along with371

increasing DBH, whereas Acer saccharum, Betula papyrifera, Pinus strobus, and Populus372

tremuloides exhibited a quadratic pattern (Figure 4a). Increases in basal area of larger trees373

resulted in greater mortality occurrence for all species (Figure 4b). The harvesting of trees374

during the remeasurement interval also increased the occurrence of mortality for most species,375

except Pinus banksiana where this effect was non significant (Figure 5).376

(Insert Figure 4 here)377

(Insert Figure 5 here)378

4 Discussion379

In this study, we defined a framework based on lifetime analysis that makes it possible to380

account for climate variables at different temporal resolutions. Our approach relies on a pro-381

portional hazard model, which has already been used to model tree mortality (Yaussy et al.,382

2013; Hämäläinen et al., 2016; Neumann et al., 2017). The originality of our approach lies383

in the fact that we use predictors not only in the proportional part as in the regular Cox384

model, but also in the baseline hazard. Since the baseline hazard is computed on an annual385

basis, it is a natural entry point for an annual climate sensitivity implementation (CSI).386

4.1 Is the annual climate sensitivity implementation better?387

Building on this framework and Bayesian posterior model probabilities, we compared an388

annual CSI with two average CSIs for eight tree species in Ontario. Contrary to our hy-389

pothesis H1, the annual CSI only proved better for one species, Picea mariana, and could390

be considered as an alternative to the average CSI for two other species, Pinus strobus and391

Populus tremuloides. Among the other five species, the average CSI based on 30-year nor-392

mals unequivocally provided the most parsimonious model for four of them. In summary, we393

17

Page 17 of 44 Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

U
ni

v 
of

 B
ri

tis
h 

C
ol

um
bi

a 
on

 0
1/

09
/2

5
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



found little evidence that an annual CSI is superior to an average CSI, whether it relies on394

interval-averaged climate variables or 30-year normals. Nevertheless, our study shows that395

an annual CSI can be an alternative to an average CSI for some species.396

There are three factors that can explain this result. Firstly, our data are interval censored:397

the exact time of death of an individual remains unknown, although we know for sure that398

death happens during the remeasurement interval. This loss of information is known to399

impact the statistical efficiency (Brooks, 1982; Turrero, 1989). There is no evidence that the400

loss of efficiency is greater for the annual CSI than for the average CSIs, but this cannot be401

ruled out and should be investigated.402

Secondly, it is possible that the year to year variability in the climate variables was not403

large enough to justify the use of annual variables. In other words, the 30-year normals or404

interval-averaged climate variables might already account for the climate variability across405

the plots.406

Thirdly, depending on the species, the decline phase leading to mortality can often last407

several years (Cailleret et al., 2017). For instance, an increased mortality was still observed408

three years after the 2003 extreme drought in France (Bréda and Badeau, 2008). The annual409

CSI in our framework does not consider climate effects that go beyond the current year. A410

high temperature for a given year will induce an increase of the hazard for that year, but will411

not affect the hazard of the following years.412

Manso et al. (2013) used a lifetime analysis approach similar to ours in the modelling413

of seed germination. They managed to account for a temporal dependence in their daily414

hazard function so that the hazard of a particular day would be affected by the hazard of the415

previous day. We unsuccessfully tried to include this serial dependence in our framework. It416

could be that this serial dependence of the hazard did not exist in our data, or more likely,417

that extreme climate events leading to a long declining phase were scarce in our dataset.418

To the best of our knowledge, nothing like the 2003 extreme drought in France happened in419

Ontario over the time span of our dataset. Hember et al. (2017) reported several droughts420
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that occurred in North America between 1981 and 2012. Some of them hit Canada, but421

mainly in the Prairies and interior British Columbia (Bonsal et al., 2011). In Ontario, the422

only extreme droughts occurred in 1966 and 1988 (Gabriel and Kreutzwiser, 1993). We tested423

the impact of these droughts in our models using dummy variables, but we did not find any424

significant effects. The performance of the different CSIs might have been different if more425

extreme climate events had been observed in the data. This remains to be tested, but the426

framework is still valid for such a comparison.427

4.2 The effects of climate variables on tree mortality428

Overall, the inclusion of climate variables in the models improved their fit as shown by the429

drops in BIC for all the species (Table 3). However, larger drops in BIC were observed with430

the basic model (MBAS) and the mixed-effects model (MMIX). For all models benefiting from431

a CSI, the marginal contribution of climate variables to the model fit remained relatively small432

once competition, tree size, and cluster random effects had been accounted for in the model.433

Power et al. (2024) evaluated the contribution of different categories of variables in models434

of tree mortality in the neighbouring province of Quebec. For most species, they found that435

competition, tree size, and stand age had greater contributions to the model fit than climate436

variables.437

Random effects stand for the joint effect of unobserved variables, such as drainage and438

soil texture (Gregoire, 1987). In our data, we had a few site descriptors, but in many cases,439

their values were missing. Keeping only the records for which we had observed values of440

these site descriptors would have left a depleted dataset. Power et al. (2024) showed that441

these site descriptors also have a limited contribution to the model fit. The joint effect of442

these descriptors can be considered as part of the cluster random effect in our models. The443

cluster random effects might also include some unaccounted for climate variables as well.444

Fortin et al. (2008) evidenced the presence of an interval random effect in a mortality model445

applied to northern hardwood species. Given that many plots were remeasured only once,446
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the interval effect might be confounded with the cluster random effect in our study.447

Regarding our hypotheses on the effect of temperature, the higher mortality occurrence448

associated with warmer summer temperatures (H2) was corroborated in the model of Populus449

tremuloides, but refuted in the model of Acer saccharum. These contradictory results can450

be related to the species distributions. Acer saccharum is a species of the temperate forest451

zone and its distribution extends further south in the United States (Godman et al., 1990),452

indicating that it can tolerate warmer temperatures than those observed in our dataset. In453

contrast, Populus tremuloides is an emblematic species of the boreal forest zone and the454

province of Ontario covers a large part of its distribution (Perala, 1990). Sharma (2021) also455

found that the effects of climate variables on stand height varied depending on the locations.456

Our hypothesis of lower mortality occurrence associated with warmer winter temperatures457

(H3) was refuted for four out of five species where the mean minimum January temperature458

was found significant. It rather appears that these warmer winter temperatures are detri-459

mental to the survival of Abies balsamea, Betula papyrifera, Picea glauca, and Pinus strobus.460

In fact, our hypothesis H3 was only corroborated in the model of Acer saccharum.461

Winter temperatures in North America are much lower than those in Europe (Seager et al.,462

2002). It can be hypothesized that the physiology of some tree species, especially boreal ones,463

requires cold winter temperatures. Contrary to the general hypothesis that warmer winters464

favour growth (Huang et al., 2010), Oboite and Comeau (2021) reported greater annual di-465

ameter growth associated with shorter frost-free periods for Picea glauca, Pinus banksiana,466

and Pinus contorta Dougl. ex. Loud. in western Canada. Likewise, Dymond et al. (2019)467

found cooler fall temperatures were linked to greater diameter growth for Picea mariana on468

peatland in Minnesota, USA. The physiological explanation behind this dependence to cold469

temperatures still needs to be developed.470

Greater precipitation resulted in increased mortality rates for Picea mariana, Pinus471

banksiana, and Populus tremuloides. This result was contrary to our hypothesis H4. Hember et al.472

(2017) also reported contradictory results in the relationship between soil water content and473
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tree mortality in North America; large water contents would be detrimental to tree survival for474

some species, such as Pinus banksiana and Pinus strobus. Contradictory results of the same475

kind have also been highlighted in other studies (Lines et al., 2010; Dietze and Moorcroft,476

2011; Yaussy et al., 2013; Cortini et al., 2017; Sánchez-Pinillos et al., 2022). Greater precip-477

itation has already been found to be detrimental to diameter growth for some species such478

as white pine (Sharma, 2023).479

No satisfactory explanation has been provided to explain the contradictory positive re-480

lationship between water availability and mortality. Yaussy et al. (2013) hypothesized that481

this positive relationship might be the result of an over-representation of younger trees in482

their data, those being less affected by water scarcity than older trees. We found no evidence483

in our data to support their hypothesis.484

An interesting point raised by Cortini et al. (2017) is that pine species are more tolerant to485

drought and that the threshold beyond which they are really affected by water scarcity might486

not have been reached in the data. This is a plausible explanation. In that case, it could be487

hypothesized that the true relationship between water availability and mortality is U-shaped488

for some species as Lines et al. (2010) observed in the eastern United States. The average489

Pearson residuals of the three species for which precipitation was a significant predictor490

showed that this water scarcity threshold is smaller than 125 mm for the total precipitation491

from March to May and 200 mm for the total precipitation from June to August (see Figures492

S5, S6, and S8 in the Supplementary Material).493

4.3 The potential impacts of climate change494

Using the 1995-2014 reference period, the climate projections of the Intergovernmental Panel495

on Climate Change (IPCC) for the 2041-2060 period under the Shared Socioeconomic Path-496

way “Middle of the Road” show the following trends in the climate variables we used (SSP2-497

4.5, see Gutiérrez et al., 2021):498

• +1.7◦C in mean temperature from June to August;499
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• +2.1◦C in mean minimum January temperature;500

• +5.3% in total precipitation from March to May;501

• +2.1% in total precipitation from June to August.502

The impacts of climate change are often anticipated through a space-for-time assumption503

(Picket, 1989). It is assumed that future mortality occurrence in a particular location will504

be similar to current mortality occurrence in locations subjected to a warmer climate.505

Our models suggest that mortality occurrence will increase for Betula papyrifera, Picea506

glauca, Pinus strobus, and Populus tremuloides due to increasing summer and winter tem-507

perature. In the case of Abies balsamea, the response will be location dependent: a decrease508

of mortality occurrence can be anticipated in locations with cold winter temperature whereas509

an increase of mortality occurrence should be expected in locations with warmer winter tem-510

perature. On the contrary, mortality occurrence should slightly decrease for Acer saccharum.511

The increase in total precipitation from March to May will induce an increase of mortal-512

ity occurrence for Populus tremuloides. The increase in total precipitation from June to513

August should also cause a slight increase of mortality occurrence for Picea mariana and514

Pinus banksiana. It must be stressed that the space-for-time assumption underlying these515

predictions does not account for an eventual lag caused by genetic adaptation to new climatic516

conditions (Klesse et al., 2020).517

In its latest assessment report, the IPCC also predicts a greater occurrence of extreme518

climate events in the future due to climate change (Seneviratne et al., 2021). We did not go519

as far as to make a formal comparison between the annual and average CSIs in the context520

of greater occurrence of extreme climate events. We anticipate that models based on an521

annual CSI will be more sensitive to these extreme events and could produce more realistic522

predictions. This issue deserves further investigation.523

22

Page 22 of 44Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

U
ni

v 
of

 B
ri

tis
h 

C
ol

um
bi

a 
on

 0
1/

09
/2

5
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



4.4 Other effects and limitations524

The effect of DBH on mortality has been traditionally found to be U shaped (Lines et al.,525

2010; Fortin et al., 2014). Although our predictions do not cover the smallest and largest526

diameters (Fig. 4a), the addition of the squared DBH in the model ensured the predictions527

would tend to the expected U-shaped pattern. This was true for four species, but still the528

squared DBH did not have a significant effect in the models of Abies balsamea, Picea glauca,529

Picea mariana, and Pinus banksiana (Table 4). The trees of these latter species rarely reach530

large diameters. In our data, the 97.5th percentile of their DBH distributions was smaller531

than 33 cm for all four species (Figure 4a). The absence of large DBH in the dataset as well532

as the truncation below the merchantable size might explain why the U-shaped pattern was533

not observed for these four species.534

Increasing competition, as measured through the basal area of larger trees (BAL), is535

known to increase mortality occurrence. Our results are in line with those of previous studies536

(Rathbun et al., 2010; Fortin et al., 2014; Manso et al., 2015). Interestingly, the occurrence537

of harvesting also resulted in large increases in mortality occurrence. In black spruce domi-538

nated stands in Ontario, Thorpe et al. (2008) found that residual trees experienced mortality539

rates 12.6 times higher in the first year after partial harvesting compared to pre-harvest rates.540

Likewise, Bladon et al. (2008) estimated mortality rates to be 2.5 to 4 times greater after541

retention cutting in Alberta.542

Other variables related to tree crown, social position, and vigour have been identified as543

predictors of individual tree mortality occurrence (Monserud and Sterba, 1999; Dobbertin and Brang,544

2001; Fortin et al., 2008; Rathbun et al., 2010). Guillemette et al. (2008) also linked the oc-545

currence of defects, such as canker and wounds, with higher mortality rates. Unfortunately,546

these variables were either not available or had so many missing observations in our dataset547

that they could not be integrated into our models. Adding these variables in the models548

would likely improve their performance.549

Our study does not consider insect outbreaks. We initially intended to account for these in550
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our models, but our data did not allow for it. For instance, a spruce budworm (Choristoneura551

fumiferana Clemens) outbreak occurred in Ontario during the 1970s and 1980s (Blais, 1983).552

The outbreak peaked in 1981 and then, declined until 1998 (Candau and Fleming, 2005).553

Defoliations were limited to a few sectors of northeastern Ontario until 2018. Since then,554

the defoliated area has increased into what could be considered as a new outbreak (J.-N.555

Candau, personal communication). Abies balsamea and Picea glauca are the host species556

that most suffer from these outbreaks (Boulanger and Arsenault, 2004). In our data, 99%557

of the remeasurement intervals of Abies balsamea and 92% of those of Picea glauca started558

after 1991. Moreover, the latest remeasurement intervals could include up to four years of559

severe defoliation, whereas the outbreak-induced mortality usually peaks after this period560

(Pothier and Mailly, 2006). Nevertheless, we tried to include dummy variables in the models561

of these two species to distinguish outbreak periods from endemic periods, but their effects562

were found to be non significant. Fortin and Langevin (2012) managed to account for spruce563

budworm outbreaks in the mortality component of their individual-based growth model in564

Quebec. The main difference with our dataset is that theirs had many more observations565

during outbreak periods.566

5 Conclusions567

Our framework based on a lifetime analysis approach makes it possible (i) to integrate an-568

nual climate variables in models of tree mortality even if the observations were recorded569

over multiple-year intervals, and (ii) to compare the model performance with similar models570

using an average CSI. It is particularly well adapted to permanent-plot data because the571

remeasurement intervals are usually irregular and the data are interval censored.572

Using this framework, we modelled tree mortality for eight species in Ontario and showed573

that the hypothesis (H1) of the annual CSI outperforming the average CSI could not be574

corroborated. However, the annual CSI proved to be an alternative to the average CSI for575
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some species. Accounting for serial dependence in the hazard function could be an avenue576

of improvement to the annual CSI. We also hypothesize that the annual CSI might prove577

statistically superior when there is a greater year-to-year variability and more extreme climate578

events than what we observed in our data. This remains to be tested and our framework579

could prove useful for further comparisons. Because extreme climate events will likely be580

more frequent in the future, we recommend using the annual CSI when it can be considered581

as an alternative to the average CSI, that is when its Bayesian posterior probability is greater582

than 0.05.583

Our results on the effects of climate variables were surprising in most cases. The hy-584

potheses that (H2) warmer summer temperature is detrimental to survival, that (H3) warmer585

winter temperature favours tree survival, and that (H4) lower spring and summer precipi-586

tation leads to greater mortality rates could not be corroborated either. Digging in the587

literature, we found that these contradictory results are not uncommon. We conclude that588

the effects of climate on tree mortality interact with other factors such as species distribution589

and ecophysiology.590
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Figures818

Figure 1: Distribution of the permanent plots of the Ontario Growth and Yield pro-
gram with at least one merchantable tree of the selected species. The province of On-
tario is delineated in yellow. These maps were created using QGIS version 3.28 and
assembled from the following data sources: boundaries from the North American Atlas
(Commission for Environmental Cooperation, 2010), plot locations from the database of the
Forest Growth and Yield program of the Ontario Ministry of Natural Resources.
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Figure 2: Mean annual temperature (a) and total annual precipitation (b) in Ontario
for the 1981-2010 period. These maps were created using QGIS version 3.28 and as-
sembled from the following data sources: boundaries from the North American Atlas
(Commission for Environmental Cooperation, 2010), climate data from the BioSIM appli-
cation (Régnière et al., 1995, 2017; Fortin et al., 2022).
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Figure 3: Predicted five-year probability of mortality in function of climate variables. It was
assumed there was no harvesting during the interval (Harvest = 0). Other variables were set
to their means as shown in Tables 1 and 2. For Picea mariana, the annual climate variables
were generated under the assumption of normal distribution with mean and variance as
observed in the dataset (see Sections S3 and S4 of the Supplementary Material). The range
of the climate variables was delimited by the 2.5th and 97.5th percentiles of the distribution
observed in the dataset.
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c) d)
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Figure 4: Predicted five-year probability of mortality in function of DBH (a) and basal area
of larger trees (b). It was assumed there was no harvesting during the interval (Harvest = 0).
Other variables were set to their means as shown in Tables 1 and 2. The range of DBH and
basal area of larger trees was delimited by the 2.5th and 97.5th percentiles of the distribution
observed in the dataset.
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Figure 5: Predicted five-year probability of mortality in function of harvest occurrence during
the interval. Other variables were set to their means as shown in Tables 1 and 2.
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