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Abstract
In the context of global change, a better understanding of the dynamics of wood 
degradation, and how they relate to tree attributes and climatic conditions, is nec-
essary to improve broad-scale assessments of the contributions of deadwood to 
various ecological processes, and ultimately, for the development of adaptive post-
disturbance management strategies. The objective of this meta-analysis was to re-
view the effects of tree attributes and local climatic conditions on the time since 
death of coarse woody debris ranging in decomposition states. Results from our 
meta-analysis showed that projected warming will likely accelerate wood decom-
position and significantly decrease the residence time in decay stages. By promoting 
such a decrease in residence time, further climate warming is very likely to alter the 
dynamics of deadwood, which in turn may affect saproxylic biodiversity by decreas-
ing the temporal availability of specific habitats. Moreover, while coarse woody de-
bris has been recognized as a key resource for bioenergy at the global scale, the 
acceleration of decay-stages transition dynamics indicates that the temporal win-
dow during which dead trees are available as feedstock for value-added products 
will shrink. Consequently, future planning and implementation of salvage harvest-
ing will need to occur within a short period following disturbance, especially in 
warmer regions dominated by hardwood species. Another important contribution 
of this work was the development of a harmonized classification system that relies 
on the correspondence between the visual criteria used to characterize deadwood 
decomposition stages in locally developed systems the literature. This system could 
be used in future investigations to facilitate direct comparisons between studies. 
Our literature survey also highlights that most of the information on wood decay 
dynamics comes from temperate and boreal forests, whereas data from subtropical, 
equatorial and subarctic forests are scarce. Such data are urgently needed to allow 
broader-scale conclusions on global wood degradation dynamics.
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1   |   INTRODUCTION

Forest ecosystems are shaped by natural disturbances 
that help maintain heterogeneous forest landscapes and 
promote species diversity (Buma & Schultz, 2020; Thom 
& Seidl,  2016). However, there is growing evidence 
that climate change is accelerating disturbance rates, 
thereby inducing broad-scale forest die-off in many re-
gions (Anderegg et al., 2020; Millar & Stephenson, 2015; 
Trumbore et al.,  2015). For example, an increase in the 
frequency and severity of droughts has induced extensive 
tree mortality globally (Allen et al.,  2010, 2015). Global 
warming is also contributing to altering fire regimes in 
several forest ecosystems, leading to a generalized in-
crease in fire-killed forests (Andela et al., 2017; Herawati 
et al., 2015; Pausas & Keeley, 2014). Outbreaks of (often 
invasive) insects and pathogens are also being ampli-
fied (Battisti et al., 2005; Klapwijk et al., 2012; Robinet & 
Roques, 2010), which can lead to compound disturbances 
of unprecedented severity and to broad-scale disruptions 
of forest ecosystems (McDowell et al.,  2020; Millar & 
Stephenson, 2015). The increasing amount of dead trees 
that results from global alterations in disturbance regimes 
calls for the development of adaptive post-disturbance 
management strategies in which prioritization must be 
made between biomass recovery by the forest industry, or 
its conservation for biodiversity (Barrette et al., 2013).

The International Panel on Climate Change (IPCC) 
has recognized trees killed by natural disturbances as a 
potential key resource for bioenergy at the global scale 
(Chum et al., 2011). When used as a substitute for fossil 
fuels, biomass from dead trees has the potential to re-
duce net greenhouse gas emissions over time (Gustavsson 
et al.,  2015; Lamers et al., 2013, 2014), although the net 
carbon balance depends on multiple factors, including 
the type of substituted fossil fuels, wood feedstock, and 
post-disturbance forest growth, which in turn can be af-
fected by silvicultural treatments (Laganière et al., 2017). 
Recently dead trees may also supply both the sawlog and 
the wood pellet industries (Barrette et al., 2015), thereby 
providing services to society and substituting emission-
intensive materials (Bogdanski et al.,  2011). The world-
wide demand for wood biomass is constantly increasing 
as a result of renewable energy policies that have recently 
been implemented in various jurisdictions (Goh et al., 
2013; Lamers et al., 2014; Stupak et al., 2007).

Coarse woody debris also contributes to the struc-
tural complexity and heterogeneity of forests globally, 
and is thus considered a key ecological attribute involved 
in several ecosystem processes (Jonsson & Kruys, 2001). 
Post-disturbance forests are recognized as biodiversity 
hotspots as they provide suitable nesting, sheltering, 
and breeding environments for multiple animal species 

(Harmon et al.,  1986; Thomas,  1979), as well as sub-
strates for the proliferation of vascular plants, cryptog-
ams, and fungi (Chećko et al., 2015; Dittrich et al., 2014; 
Lassauce et al., 2011; Ódor et al., 2006; Rajala et al., 2015). 
Deadwood also plays an essential role in the global car-
bon cycle through carbon stocking in forest soils and nu-
trient cycling processes (Denman et al.,  2007; Laiho & 
Prescott,  2004). Salvage harvesting in forests affected by 
natural disturbances may thus undermine the ecological 
benefits of deadwood retention (Lindenmayer et al., 2004; 
Lindenmayer & Noss,  2006; Nappi et al.,  2004), which 
leaves forest managers in the middle of competing 
expectations.

One limitation to the development of broad-scale post-
disturbance management strategies is the lack of knowl-
edge on the global dynamics of tree degradation. Weedon 
et al. (2009) produced a global meta-analysis of wood de-
composition dynamics, which can provide key insights for 
carbon emission models, for example Wang et al. (2010). 
However, salvage harvesting decisions must be based not 
only on the level of degradation of the woody material 
itself, but also on the more general degradation state of 
the trees, which can be described using visual criteria (i.e., 
Aakala et al.,  2008; Barrette et al.,  2015; Mäkinen et al., 
2006). To date, most studies focusing on degradation state 
dynamics have been limited in geographical scope and 
number of tree species (see Table 1). Despite being based 
on similar criteria, several classification systems have 
been locally developed to visually estimate the state of 
decomposition of dead trees. The multiplicity of systems 
used in the literature limits the possibility to compare re-
sults at a larger scale. Without a broader understanding 
of wood degradation dynamics, the range of wood prod-
ucts that could be provided by post-disturbance forests 
over time remains unclear, and so are the management 
practices that would ensure the supply of fiber for these 
processing pathways (Barrette et al., 2015) while ensuring 
the maintenance of ecological processes associated with 
deadwood.

In this study, we gathered data from 23 studies, rep-
resenting 2493 trees from 42 sites across Europe and the 
Americas, with the aim to better understand broad-scale 
variation in wood degradation dynamics following tree 
death. Using a meta-analysis approach, we reviewed 
the effects of a complementary set of tree attributes and 
local climatic conditions on the time since death of both 
standing dead trees and downed woody debris ranging in 
degradation levels. As a second objective of this study, we 
developed an integrated, synthetic decay class system for 
deadwood that could relate to locally developed systems 
and facilitate comparisons between studies. Finally, in 
support of the implementation of adaptive forest man-
agement practices, we also highlight gaps in current 
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knowledge that should be addressed by future studies to 
better assess wood degradation dynamics and their inclu-
sion into modeling efforts.

2   |   MATERIALS AND METHODS

2.1  |  Literature survey and study 
selection

Peer-reviewed articles documenting time since death 
(TSD) of coarse woody debris (CWD) were obtained from 
Google Scholar using the following keywords: “snag”, 
“standing dead tree”, “log”, “downed woody debris”, 

“coarse woody debris” or “deadwood” + “time since 
death” or “year of death” + “decomposition class”, “deg-
radation class” or “decay class”. Abbreviations were in-
cluded in the search strings and the literature cited in 
every study was checked for potential relevance. To be 
included in this meta-analysis, studies had to meet the 
following criteria: (1) TSDs were obtained from dendro-
chronology methods using crossdated ring-width series 
statistically validated with quality control programs such 
as COFECHA (Holmes,  1983); (2) TSDs were specified 
by decay classes (DCs), by species and by CWD type, that 
is, standing dead trees (SDTs) or downed woody debris 
(DWD); (3) statistical information, that is, mean, stand-
ard deviation, and sample sizes were clearly reported for 

T A B L E  1   Summary of the 23 published studies used in the meta-analysis

# Reference Location DC Species CWD types Stand Sites Trees

1 Aakala (2010) FI, RU 1, 2 PiA DWD, SDT S 3 461

2 Aakala et al. (2007) CA NM AbB, PiM SDT S 1 190

3 Alexander et al. (2018) US 3 FaG, Fr, LiT, QuE, QuL DWD H 1 94

4 Angers et al. (2012) CA 1 AbB, PiM, PnB, PoT SDT S 2 211

5 Barrette et al. (2015) CA 4 PiM SDT S 1 158

6 Brown et al. (1998) US NM PiE, PnC, DWD S 1 43

7 Campbell and Laroque (2007) CA 5 (6) AbB, PiM DWD, SDT S 2 75

8 Daniels et al. (1997) CA 6 ThP DWD, SDT S 1 29

9 DeLong et al. (2005) CA 7 (6) AbL, PiGxE DWD S 1 97

10 DeLong et al. (2008) CA BO AbL, PiGxE SDT S 1 158

11 Holeksa et al. (2008) PL 8 (9) PiA DWD S 1 106

12 Huggard (1999) CA 6 PiE SDT S 1 138

13 Kahl et al. (2012) DE NM FaS DWD H 1 5

14 Kruys et al. (2002) SE 8 (9) PiA DWD S 1 90

15 Lombardi et al. (2008) IT 4 AbA, FaS SDT H, S 2 103

16 Lombardi et al. (2011) CL 4 NoB DWD H 1 35

17 Petrillo, Cherubini, Fravolini, 
et al. (2016)

IT 4 LaD, PiA DWD A, M, S 5 21

18 Ruel et al. (2010) CA O PiM DWD S 1 17

19 Saine et al. (2018) FI 10 PnS SDT S 13 55

20 Storaunet (2004) NO BO PiA SDT S 1 107

21 Storaunet and Rolstad (2002) NO 11 (12) PiA DWD S 2 113

22 Waskiewicz et al. (2007) US 6 PnP SDT S 1 79

23 Zielonka (2006) PL 13 PiA DWD S 1 107

Notes: Location: CA, Canada; CL, Chile; DE, Germany; FI, Finland; IT, Italy; NO, Norway; PL, Poland; RU, Russian Federation; SE, Sweden; US, United 
States. DC: Decay classification(s) used in the reference study before we standardized it; 1, Imbeau and Desrochers (2002); 2, Lännenpäa et al. (2008); 3, Pyle 
and Brown (1998); 4, Hunter (1990); 5, Daniels et al. 1997; 6, Thomas et al. (1979); 7, Newberry et al. 2004; 8, Söderström (1988); 9, McCullough's (1948); 10, 
Renvall (1995); 11, Hofgaard (1993); 12, Arnborg (1942); 13, Holeksa (1998); BO, Branch order classification; NM, Not mentioned; O, Own classification. 
Tree species: AbA, Abies alba; AbB, Abies balsamea; AbL, Abies lasiocarpa; FaG, Fagus grandifolia; FaS, Fagus sylvatica; Fr, Fraxinus sp.; LaD, Larix decidua; 
LiT, Liriodendron tulipifera; NoB, Nothofagus betuloides; Pi, Picea sp.; PiA, Picea abies; PiE, Picea engelmannii; PiGxE, Picea glauca × Picea engelmannii; PiM, 
Picea mariana; PnB, Pinus banksiana; PnC, Pinus contorta; PnP, Pinus ponderosa; PnS, Pinus sylvestris; PoT, Populus tremuloides; QuE, Quercus subgenus 
erythrobalanus; QuL, Quercus subgenus lepidobalanus; ThP, Thuja plicata. Coarse Woody Debris (CWD): DWD, downed woody debris; SDT, standing dead 
trees. Stand: A, Alpine grassland; H, Hardwood; M, Mixedwood; S, Softwood. Sites is the number of geolocalized sites in the study. Trees: the number of trees 
sampled.
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each group of interest; (4) the study was peer-reviewed 
and published in English or in French and; and (5) the 
study was the original source of the data being reported 
(see Appendix I for more details on excluded studies). The 
final dataset is described in Table 1 and Figure 1.

2.2  |  Data assembly

Candidate explanatory variables affecting TSD were se-
lected based on literature and according to their availabil-
ity either in open-source databases or directly withing the 
selected studies. Two types of independent variables were 
tested: (1) tree-level variables, that is, decay class, CWD 
type, wood density, and phylogeny (softwood or hard-
wood); (2) site-level climatic conditions, that is, mean 
maximum summer temperature and mean total annual 
precipitation (Table 2).

We first constructed an integrated decay-class system 
allowing us to comprehensively compile and classify data 
from all selected studies. Current systems typically segre-
gate dead trees into several DCs based on various individ-
ual stem attributes, such as the firmness or presence of 
bark, the presence or absence of remaining foliage, the 
presence of twigs or branches, etc. We thus developed a 
harmonized three-class system describing the state of de-
composition of both DWD and SDT (Figure 2 and Table S1).  

We have excluded the more advanced stages of decay for 
which dating tree death by dendrochronology is generally 
unapplicable as a result of an absence of bark or due to ex-
cessive wood decomposition. Whenever there was uncer-
tainty when assigning data according to one category of our 
classification system, priority was given to the hardness of 
the wood, followed by the state of decomposition and the 
order of branches (Figure 2). Following the attribution of 
a new DC based on our integrated system, we extracted 
TSD means, standard deviations and sample sizes per 
CWD type, species and DC for each study site (Figure S1).  
WebPlotDigitizer (V.4.0., Rohatgi,  2018) was used if the 
data were presented as figures in the publications.

Species- and region-specific mean wood density (WD) 
values were obtained from the Global wood density database 
(Zanne et al.,  2009). The database reports values collected 
from the literature of wood density as oven-dry mass divided 
by green volume (Chave et al., 2009), or specific gravity. Most 
species found correspondence in the database, but in the 
few cases where species- and region-specific values were not 
available in the database, the mean density of species of the 
same genus for the region of interest was used.

Local climatic conditions were obtained at a 1-km2 
spatial resolution from the WorldClim database (V.2, Fick 
& Hijmans, 2017). Mean maximum summer temperature 
and mean total annual precipitation for 1970–2000 were 
extracted for each site according to their coordinates using 

F I G U R E  1   Localization of the 42 sites of the 23 studies included in the present meta-analysis. The colors refer to the results of a 
clustering analysis based on site- and tree-level variables that were found to affect wood debris decomposition. Cluster A (red) is mainly 
composed of softwoods exposed to cold and dry environments, cluster B (green) is composed of softwoods in cold but wet environments and 
cluster C (purple) consists of hardwood in warmer environments
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the “raster” package (V. 2.9-5, Hijmans et al., 2015) in R 
statistical programming software (R Core Team, 2019).

2.3  |  Meta-analysis

The influence of the selected candidate variables on TSD was 
tested using mixed-effect meta-regressions. Raw TSD mean 
was used as the outcome measure for the meta-analysis, 
as this measure is provided on a meaningful scale and was 
available throughout all selected studies. Mixed models 
(Table 3) were implemented using the “rma.mv” function of 
the “metafor” package (Viechtbauer, 2010) in R. Given that 
methods and sample characteristics are likely to be some-
what different throughout the set of studies included in the 
meta-analysis, the study of origin was added as a random ef-
fect in each model (Viechtbauer, 2010). The sensitivity of our 
models to outliers was tested using the “influence” function 
of the “metafor” package (Viechtbauer, 2010).

We performed a model selection to identify the best pre-
dictors of TSD using the “MuMIn” package (Bartoń, 2019) 
in R. Because preliminary analyses of the dataset sug-
gested strong interactions between DC and climate vari-
ables, they were included as interactions in the candidate 
models (i.e., DC × MaxTemp and DC × Prec). Preliminary 
analyses also suggested a potential interaction between 
DC and WD so they were included both as additive and 
interaction terms in the candidate models. No correlations 
were found between independent variables (r < 0.7; Figure 
S2), allowing us to include a full model in the model selec-
tion. We fitted a total of eight candidate models that were 
included in the model selection process, including a null 
(intercept-only) model (Table 3). The performance of the 
candidate models was assessed with the corrected Akaike 

information criterion (AICc). Because the AICc weight 
of the best model was <0.9, it was not possible to select 
a unique model to explain TSD. Therefore, we evaluated 
the effects of each variable included in the best models 
through model averaging using the “MuMIn” package. 
Estimates and confidence intervals were calculated using 
a “full” average, which is a type of shrinkage estimator that 
prevents biasing values away from zero (Bartoń,  2019).  
p-values were used to assess the significance of the consid-
ered explanatory variables.

To summarize the woody debris dynamics at a broad 
scale, we performed a cluster analysis considering the sig-
nificant explanatory variables previously identified in the 
model selection. This analysis allowed us to first identify 
patterns in wood debris dynamics, and then relate these 
patterns to site characteristics. We used mixed reduced 
K-means (mixed RKM), which implements a joint dimen-
sion reduction (principal component analysis for mixed 
data) and clustering method for mixed-type variables, 
using the “clustrd” package in R (Markos et al.,  2019). 
This method is well-suited for mixed datasets such as 
ours, which include both discrete and metric values (van 
de Velden et al.,  2019). Mixed RKM also performs bet-
ter than a two-step analysis in which a cluster analysis 
is applied to the results of dimension reduction (i.e., tan-
dem analysis), an approach that proved unsuitable for the 
clustering step (van de Velden et al., 2017, 2019; Vichi & 
Kiers, 2001). The appropriate number of clusters and the 
stability of the solution were evaluated using 20 bootstrap 
replicates through the “clustrd” package.

To better evaluate the implications of the variables iden-
tified as affecting TSD on the woody debris dynamics, we 
modeled decay-class distributions of woody debris over 
time for each cluster identified in the mixed RKM analysis 
using the stage-based matrix method developed by Kruys 
et al.  (2002). Only tree species for which DCs 1 to 3 were 
sampled were included in the mean residence time calcu-
lation. Given that all selected studies did not contain longi-
tudinal data (i.e., decay of woody debris was not measured 
over time), slow-decaying trees are more likely to have been 
sampled than quick-decaying ones. To account for this bias, 
we calculated the mean residence time in each DC using 
a Horwitz–Thompson estimator, as suggested by Kruys 
et al. (2002). The mean residence times for each decay class 
within each cluster were then used to compute transition 
probabilities. The probabilities were calculated using a 5-
year time step, within which a tree could either remain in 
the same DC, move to the next DC, or move to the second 
next DC (Kruys et al., 2002). Trees were considered “out” of 
the system when they reached a DC > 3. Computations were 
implemented in the R statistical programming environment.

Finally, we computed spatially explicit projections of 
how the mean TSD of deadwood may evolve over time when 

T A B L E  2   List of candidate explanatory variables included in 
the modeling process

Variable Description

DC Decay class: 1, 2 or 3

CWD Coarse woody debris type: standing dead tree 
(SDT) or downed woody debris (DWD)

TreePhyl Tree phylogeny; hardwood or softwood

WD (g/cm3) Species- and region-specific wood density 
(Global wood density database (Zanne 
et al., 2009)

Prec (cm) Mean total annual precipitation for 1970–
2000 (WorldClim database (V.2, Fick & 
Hijmans, 2017)

MaxTemp (°C) Mean maximal temperatures in January 
(Southern Hemisphere) and July 
(Northern Hemisphere) for 1970–2000 
(WorldClim database (V.2, Fick & 
Hijmans, 2017)
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considering two scenarios of future climate in comparison 
to a reference climate. For the purpose of the paper, we fo-
cused on the first decay class, as the time window within 
which trees can be used as feedstock for bioenergy is limited 
(Barrette et al., 2015). Projections were computed for Europe 
where we had the highest density of sites included in the 
meta-analysis. First, forest composition was acquired using 
the EU-Forest database (Mauri et al., 2017), a high resolu-
tion (1-km-cell grid) dataset compiling tree occurrence from 
European National Forest Inventories. Species occurrences 
were compiled using a one-degree-cell grid overlying the area 
covered by the EU-Forest database. Species with less than 50 
occurrences across Europe were removed. Second, species-
specific wood density (g/cm3) for Europe was obtained 
from the Global wood density database (Zanne et al., 2009). 
Species for which wood density was not available were at-
tributed the mean density of the corresponding genus in 

Europe. The average wood density for each one-degree cell 
was then calculated as the mean wood density weighted by 
the species abundances. Finally, baseline (1970–2000) and 
projected (2080–2100) maximum temperatures and total an-
nual precipitation according to shared socio-economic path-
ways (SSPs) 2–4.5 and 5–8.5 were obtained from Worldclim 
(V.2, Fick & Hijmans,  2017). Downscaled (10-min resolu-
tion) projections for eight models of the CIMP6 (Coupled 
Model Intercomparison Project Phase 6; Eyring et al., 2016) 
multi-model ensemble that were available at the time of run-
ning the analyses (see Table S2 for detailed information on 
these models). Baseline maximum temperatures and total 
annual precipitation were averaged for each one-degree cell. 
Projected climate variables were calculated considering the 
outputs of the eight GCMs. Spatially explicit projections 
of the TSD of woody debris were computed using the best 
model identified through the model selection process and 

F I G U R E  2   Integrating decay classification developed for this meta-analysis allowing the inclusion of both standing dead trees and 
downed woody debris. Advanced decay stages were not considered when building this classification system as dendrochronology methods 
are generally impracticable on such debris
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mapped across Europe using the “predict.rma” function of 
the “metafor” package. As our model is linear and based on 
a normal distribution, the projected values associated with 
the warmer sites were sometimes slightly below zero (~20% 
of the 1-km cells across Europe). We assigned these cells a 
predicted value of 0 to remain biologically meaningful.

3   |   RESULTS

Our meta-analysis indicated that both climatic conditions 
and tree-level variables were good indicators of the time 
since death of woody debris. Model selection revealed that 
the most plausible model (wAICc  =  0.72) included the 
interaction between DC and maximum summer tempera-
ture, the interaction between DC and total annual precipi-
tation, the interaction between DC and WD and the tree 
phylogeny (Model 6, Table 3). The second most plausible 
model (wAICc = 0.23) included the same variables as well 
as the CWD type.

All variables included in the most plausible model were 
significant predictors of TSD according to model averaging, 
while CWD type had no effect (Table 4). We found that DC 
was strongly related to TSD with woody debris of DC2 and 
DC3 having mean TSD values (±SE) 9.45 ± 2.43 (p < 0.0001) 
and 35.65 ± 3.83 (p < 0.0001) greater than that of DC1, re-
spectively. In the interaction between maximum summer 
temperature and DC, we found that the magnitude of the 
negative effect of temperature on TSD tended to increase in 
more advanced DCs (p < 0.0001, Figure 3a). Conversely, our 
results indicated a positive effect of total annual precipita-
tion on TSD, which was higher for DC2 and DC3 than DC1 
(p < 0.0001, Figure 3b). Wood density also had a positive ef-
fect on TSD, which again was greater in more advanced DCs 
(p = 0.012, Figure 3c). Finally, we found that TSD tended to 
be on average 4.42 ± 1.40 years higher in softwoods than in 
hardwoods for all DCs (p = 0.002).

Wood debris dynamics were successfully clustered 
considering significant variables influencing TSD, that 
is, maximum summer temperatures, total annual precip-
itation, wood density, and tree phylogeny. According to 
bootstrapping, the most stable solution contained three 
clusters, which accounted for 83.6% of the variance ob-
served between the observations. The resulting clusters 
and dimension reduction were represented on a two-
dimensional biplot (Figure  4). The first axis of the re-
sulting ordination was mainly associated with maximum 
summer temperature and tree phylogeny, while the sec-
ond was associated with a precipitation gradient. Cluster 
A contained 48.4% of all site-level means and was mainly 
composed of softwoods of low wood densities that were 
exposed to cold and dry environments. Cluster B contained 
42.2% of all site-level means and was mainly characterized 
by softwoods of higher wood densities that were exposed 
to cold and wet environments. Cluster C contained 9.4% of 
all site-level means and was characterized by hardwoods 
that had the highest wood densities and that were exposed 
to warmer environments.

A decay-class transition rate model was produced for 
each of the three clusters identified considering the mean 
residence time in each DC within each cluster and al-
lowed us to visualize the changes in the proportions of 
each decay class over time (Figure 5). Cluster A, mainly 
characterized by softwoods in cold and dry environ-
ments, showed slow transitions between DCs, with 75% 
of the trees being out of the system (i.e., decay class >3) 
~50 years after tree death. The transition model for cluster 
B, mainly characterized by softwoods of higher wood den-
sities in cold but wetter environments, showed an even 
slower decay process, with 75% of the trees being out of 
the system ~65 years after tree death. In cluster C, char-
acterized by hardwoods from warmer environments, the 
modeled wood degradation was much faster, with 75% of 
the trees being out of the system after ~30 years.

T A B L E  3   Model selection table of the eight multiple linear meta-regression models built for predicting time since death (TSD), where 
K is the total number of parameters, (including an intercept), Δi is the difference in Akaike information criteria, corrected for small sample 
sizes (AICc) with the best model, and Wi is the ratio of the Δi for a given model to that of the whole set of candidate models. Dependent 
variables included in the models are described in Table 2

Explanatory variable ID LL K AICc Δi Wi

DC × MaxTemp + DC × Prec + TreePhyl + DC × WD 6 −957.0 14 1945.3 0.0 0.72

DC × MaxTemp + DC × Prec + CWD + TreePhyl + DC × WD 8 −956.9 15 1947.6 2.3 0.23

DC × MaxTemp + DC × Prec + TreePhyl + WD 5 −962.4 12 1951.3 6.0 0.01

DC × MaxTemp + DC × Prec + CWD + TreePhyl + WD 7 −962.3 13 1953.5 8.2 0.00

DC × MaxTemp + DC × Prec 3 −974.5 10 1970.8 25.5 0.00

DC × MaxTemp + DC × Prec + CWD 4 −974.4 11 1972.8 27.6 0.00

DC 2 −1126.0 4 2260.4 315.1 0.00

Intercept only 1 −1913.3 2 3830.7 1885.4 0.00
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948  |      CHAGNON et al.

Finally, the spatially explicit projections of TSD for 
deadwood corresponding to the DC1 category ranged be-
tween 0.0 and 61.0 years (with a 95% confidence interval 
around prediction ranging from 0.0 to 100.0 years) when 
using the baseline climate across Europe (Figure 6). The 
lower values of predicted TSD were obtained around the 
Mediterranean, whereas the highest TSD predictions were 
concentrated in the Alps, in Scotland and in southwestern 
coast of Norway. The mean predicted TSD (±SD) across 
the modeled territory was 9.6 ± 9.0 years. Projected TSD 
values for the 2080–2100 period under SSP2-4.5 showed 
a similar range of 0.0 to 59.0 years (95% CI: 0.0 to 97.5) 
across Europe, but values showed a general decreas-
ing trend, with a mean value of 5.8 ± 8.4 years. Under 
SSP5-8.5, projected TSD values ranged between 0.0 and 
62.2 years (95% CI: 0.0 to 101.7) for the 2080–2100 period, 
but the mean value decreased to 3.9 ± 7.9 years. A slight 
increase in TSD was observed in the southwestern coast of 
Norway, whereas most of the territory was characterized 
by a reduced TSD. Under this scenario, projected values of 
TSD neared zero in most of continental Europe.

4   |   DISCUSSION

4.1  |  Factors influencing wood debris 
decomposition dynamics

Our results show that the decomposition rates of both 
standing dead trees and downed woody debris increase 

with temperature but tend to decrease with annual pre-
cipitation. The association between higher temperatures 
and increased decomposition rates is well-established 
in the literature (Campbell & Laroque,  2007; Hararuk 
et al., 2020; Přívětivy et al., 2016; Russell et al., 2015). The 
optimal temperature for saproxylic fungal activity has 
been reported to range between 24 and 38°C for several 
species in the United States (Panshin & de Zeeuw, 1980), 
which is in line with our findings. Increased fungal activ-
ity is also promoted by wood moisture content (ratio of 
the mass of water to that of the oven-dry wood) values in 
the range of 30–45% (Panshin & de Zeeuw, 1980; Rayner 
& Boddy, 1988), beyond which oxygen becomes limit-
ing (Hararuk et al.,  2020; Olajuyigbe et al.,  2012; Wang 
et al.,  2002; Zell et al.,  2009). Such a relationship may 
seem to contrast with the negative impact of precipitation 
on decay rates that we observed, but total annual precipi-
tation alone may not be a good predictor of wood debris 
moisture (Liu et al., 2013). Debris characteristics such as 
standing or downed debris (Hararuk et al., 2020; Petrillo, 
Cherubini, Sartori, et al.,  2016; Přívětivy et al.,  2016), 
wood density (Mackensen et al., 2003; Petrillo, Cherubini, 
Sartori, et al.,  2016) and soil moisture, which in turn is 
influenced by aspect, slope, and soil properties (Bardelli 
et al.,  2018; Petrillo, Cherubini, Sartori, et al.,  2016), 
are also important drivers of wood debris moisture. 
Moreover, because most of the included studies are lo-
cated at relatively high latitude, high precipitation may 
be representative of high snowfall and extended snow 
cover, which may slow down the decomposition process 

T A B L E  4   Model-averaged coefficients based on the model selection described in Table 3 using a full average estimator (similar to 
shrinkage estimator). Estimate, standard error (SE), z- and p-value (z, p), and lower and upper boundaries of the 95% confidence intervals 
are reported (ci.Lb and ci.Ub). The categorical variables, that is, decay class (DC), tree phylogeny (TreePhyl), and coarse woody debris type 
(CWT) are compared to their respective reference levels: Decay class 1 (DC1), hardwood, and downed woody debris (DWD, in opposition to 
standing dead wood (SDW)

Estimate SE z p Ci.Lb Ci.Ub

Intercept 15.24 9.01 1.90 0.0572 −0.46 30.95

DC2 9.45 2.43 3.89 <0.0001 4.69 14.21

DC3 35.65 3.83 9.31 <0.0001 28.15 43.17

MaxTemp −1.49 0.51 2.92 0.0036 −2.50 −0.49

Prec 0.19 0.05 3.68 0.0002 0.09 0.29

(TreePhyl)Softwood 4.42 1.40 3.16 0.0016 1.68 7.16

WD 22.01 5.72 3.68 0.0001 10.80 33.22

DC2:MaxTemp −0.82 0.15 5.56 <0.0001 −1.12 −0.53

DC3:MaxTemp −2.20 0.24 9.28 <0.0001 −2.66 −1.73

DC2:Prec 0.17 0.02 10.17 <0.0001 0.14 0.20

DC3:Prec 0.16 0.03 5.58 <0.0001 0.10 0.22

DC2:WD 4.67 8.84 0.53 0.5973 −12.65 21.99

DC3:WD 29.98 11.93 2.51 0.0120 6.59 53.37

(CWT) SDW −0.06 0.29 0.22 0.8238 −0.64 0.51
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(Gómez-Brandón et al., 2020). The impact of precipitation 
on decay rates may also interact with temperature, sap-
roxylic fungi assemblage composition as well as the cur-
rent decay state of the considered woody debris (A'Bear 
et al.,  2014; Herrmann & Bauhus,  2013; Olajuyigbe 
et al., 2012; Venugopal et al., 2017; Wang et al., 2002). As 
highlighted by our cluster analysis, precipitation may not 
be considered in isolation of these other factors.

The areas covered by this meta-analysis are projected 
to undergo an important warming phase in the next de-
cades, with projected increases in mean annual tempera-
tures ranging from 2 to 5°C by 2100 in North America 
and western Europe (IPCC, 2013). Our results are in line 
with a previous assessment (Russell et al.,  2014), which 
suggested that such warming will likely accelerate wood 
decomposition. Based on our model, the estimated TSDs 

F I G U R E  3   Predicted time since death of coarse wood debris in relation to decay class (DC) and (a) annual maximum temperature 
(°C; as in July for the Northern Hemisphere and January for the Southern Hemisphere), (b) total annual precipitation (cm) and (c) wood 
density (g/cm3) and (d) tree phylogeny where triangles represent softwood and circles hardwood. Lines and filled symbol represent model 
predictions computed using a meta-regression approach, with the mean of the explanatory variables other than the one of interest used as a 
constant. Open symbols represent the observations from the included studies. Shaded areas and error bars represent standard error (SE)
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of the three DCs were almost equivalent at maximum 
temperatures >25°C and overlapped when considering 
the associated standard errors in Figure 3. Although not 
biologically meaningful, our model seemed to indicate 
younger deadwood in DC3 than in DC2 in warm sites. 
While this highlights the uncertainty around these esti-
mates, the similar TSD values predicted for the three DCs 
are in fact indicative of an overall faster decomposition 
rate.

The presence of very old DC3 debris in cold environ-
ments contributed to steepening the slope of the linear 
relationship between temperature and the time since 
death. Nonlinear models may have been better suited to 
such data (Oberle et al., 2020) but the implementation of 
such models using meta-regression is not possible with 
current tools, to our knowledge. Moreover, given that ob-
servations are much scarcer in warmer environments, the 
uncertainty increases toward warmer sites. Considering 
the available datasets, our model must be seen as mainly 
representative of boreal and temperate conditions. Still, 

the faster decomposition rate that can be expected with 
higher temperatures is well in line with the results of the 
decay-class transition rate models. The total residence 
time of deadwood (considering 75% of the sample trees) 
in DCs 1 to 3 was reduced by ~45%–60% in the cluster as-
sociated with warmer study sites compared to those asso-
ciated with colder sites. Conversely, the projected increase 
in precipitation regime across most of the areas covered by 
our meta-analysis (IPCC, 2013) could have mitigating ef-
fects on the expected increase in wood degradation rates, 
according to our results. Yet, spatially explicit projections 
of TSD for deadwood of the DC1 category across Europe 
indicate a strong generalized trend toward an increased 
decomposition rate, with slight decreases in decay rates 
being projected only in very limited areas. However, these 
projections should be interpreted with caution, as local 
factors may be accountable for an important part of the 
variability in wood decomposition dynamics (Bradford 
et al., 2014, 2017; Hu et al., 2018) and may interfere with 
the apparent generalized trend shown by broad-scale 

F I G U R E  4   Mixed reduced k-means biplot of samples included in the meta-analysis considering site maximum summer temperature, 
site total annual precipitation (cm), wood density and tree phylogeny (triangles represent softwood and circles hardwood.) of the sampled 
species. The three ellipses represent the three clusters (labelled A, B, and C) identified through the analysis, and the color of the symbols 
indicates the associated cluster. The number associated with each symbol indicates the study to which the observation belongs according 
to Table 1. Note that the concentrated symbols in cluster A all belong to study 19, but that labels were not shown to keep the figure legible. 
Arrows indicate the magnitude and direction of the increasing values of climatic conditions and tree-level variables. Accordingly, the first 
axis (X1) is associated with a gradient from warmer to colder maximum temperatures, and with a shift from hardwood to softwood species. 
The second axis (X2) is associated with increasing precipitation. Wood density is associated with both axes and increases toward the upper 
right of the plot
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projections. Moreover, one limitation of our spatially ex-
plicit projections is that they do not consider changes in 
forest composition and wood density that are likely to re-
sult from climate warming (e.g., Buras & Menzel, 2019).

Regarding the influence of tree-level factors on wood 
decomposition, we found that tree phylogeny and wood 
density had a significant effect on TSD for a given decay 
class. Softwood debris were found to be generally older 
than hardwood debris, a result in line with that of pre-
vious studies. The higher nitrogen and phosphorous 
concentration of hardwoods (Hu et al.,  2018; Weedon 
et al., 2009) could explain the higher decomposition rate, 
whereas the higher lignin content in softwoods is known 
to slow decay (Freschet et al., 2012). In addition, the xylem 
anatomy of hardwoods, characterized by the presence of 
large vessels, is likely to promote faster fungi colonization 
(Weedon et al., 2009) that the more continuous structure 
of softwood xylem (Harmon et al., 1986). Our results also 
indicate that TSD increases with wood density, which may 
seem surprising as hardwoods are usually denser than 
softwoods (Weedon et al.,  2009). Yet, we believe this re-
lationship to be attributable to the fact that most of our 
data are from softwoods, in which denser wood contains 
more lignin (Weedon et al.,  2009), whereas the opposite 
relationship is true for hardwoods.

We found no effect of CWD type on TSD, which con-
trasts with previous results indicating a faster decomposi-
tion of downed woody debris compared to snags (Hararuk 

et al., 2017; Oberle et al., 2018; Storaunet & Rolstad, 2002). 
Faster colonization of downed debris by micro-organisms 
(Boddy, 2001) and a favorable moisture content resulting 
from a direct contact with the soil are thought to pro-
mote faster decomposition (Oberle et al., 2018). The non-
significance of the CWD type in our study may arise from 
the fact that the timing of the fall (transition from SDW to 
DWD), known to influence wood decay rate (Storaunet & 
Rolstad, 2002), was not considered herein given its scarce 
availability within the datasets.

4.2  |  Implications for conservation and  
management

By promoting a decreased residence time in each decay 
stage, further climate warming may alter the dynamics 
of deadwood, which in turn may affect saproxylic bio-
diversity (Brunet & Isacsson,  2009; Buse,  2012; Lachat 
et al., 2013). As deadwood represents a dynamic habitat 
evolving over time, specific habitat features must be avail-
able at the right time to allow successful colonization and 
ensure the maintenance of saproxylic diversity (Lachat 
et al.,  2013; Müller & Bütler,  2010). Species associated 
with narrow ecological niches or characterized by a lim-
ited dispersal ability may be critically affected by a re-
duced residence time of deadwood in response to warmer 
conditions (Lachat et al.,  2013; Müller & Bütler,  2010). 

F I G U R E  5   Proportion of trees 
within each decay class (P) in relation 
to the time since death for the three 
clusters identified by the mixed reduced 
k-means analysis. Cluster A is composed 
of softwoods exposed to cold and dry 
environments, cluster B is composed of 
softwoods in cold but wet environments 
and cluster C consists of hardwood in 
warmer environments. Decay-class 
transition probabilities were based on a  
5-year period. “IN” refers to the 
proportion of trees that are inside the 
system (i.e., DC ≤ 3), while “OUT” refers 
to the proportion of trees that are out of 
the system (i.e., DC > 3)
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However, as climate change is expected to increase the 
frequency and magnitude of tree mortality events world-
wide (Anderegg et al., 2020; Millar & Stephenson, 2015; 
Trumbore et al.,  2015), the increased amount of dead 
trees could counteract the effect of increased tempera-
ture on deadwood decomposition rates. Moreover, as 
higher temperature is associated with increased species 
richness, warming could compensate, a least partly, for 
the diversity loss associated with the reduced availability 
of deadwood at different decomposition stages (Müller 
et al., 2015). Still, the ecological thresholds in deadwood 
quantities necessary to ensure the maintenance of saprox-
ylic species diversity depends on local forest attributes as 
well as on the dispersal potential of the associated species 
assemblage (Lachat et al.,  2013, Müller & Bütler,  2010). 
Locally informed thresholds could thus be used in con-
junction with our decay-class transition rate models to 
better inform forest managers and conservationists on the 
potential impact of warming on saproxylic biodiversity.

Considering global warming, the increase in both the 
frequency and severity of natural disturbances and the ac-
celeration of decay-stages transition dynamics also high-
lights the necessity to adapt salvage logging strategies. 
Indeed, the harvesting of woody debris may represent a 
great opportunity to value the carbon stocked in dead-
wood either for bioenergy or into long-lived end-products 
such as lumber (Lamers et al.,  2013, 2014). Indeed, for-
ests are estimated to contain around 50% of the terrestrial 
biosphere carbon (Malhi, 2002), of which up to 20% is in 
the form of standing dead trees and downed woody debris 
(Delaney et al., 1998; Harmon et al., 1990). However, such 
use of deadwood requires a targeted harvesting of lightly 
decayed wood, whose persistence is strongly influenced 
by both climatic conditions and tree-level attributes. For 
example, our results indicated that the mean residence 
time of trees in the first decay class will shift from a mean 
of ~10 years to 4–6 years in 2080 across Europe. Hence, 
as climate gets warmer, the “shelf life” of dead trees as 
feedstock for value-added products will considerably 
shrink. This is especially true for hardwoods species, for 
which the planning and implementation of salvage har-
vesting will need to occur within a short period follow-
ing disturbance. The relevance of salvage harvesting has 
not only been considered in terms of financial viability 
(e.g., Barrette et al., 2017; Béland et al., 2020; Bogdanski 
et al.,  2011; Kumar et al.,  2008), but also according to 
its climate change mitigation potential (e.g., Laganière 
et al., 2017; Lamers et al., 2013, 2014). The latter depends 
on a multitude of (sometimes interacting) factors, such as 
the type of end-product (Barrette et al., 2015) and its ex-
pected lifespan (Kurz et al., 1993), the carbon footprint of 
the substituted product (e.g., Laganière et al., 2017), the 

F I G U R E  6   Modeled time since death (TSD, in years) of 
deadwood of decay class 1 across Europe. Top panel shows the 
reference TSD modeled using the baseline climate (1970–2000). 
Middle and bottom panels refer to TSD for the 2080–2100 period 
modeled according to climatic projections for SSP2-4.5 and 
SSP5-8.5, respectively
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carbon sequestration rate of the post-disturbance forest 
(Paquette & Messier, 2010), and the timing and quantity 
of emissions related to the decomposition the dead trees. 
To increase the climate change mitigation potential of sal-
vage harvesting, special attention should be given to the 
factors that may help reduce the time needed to achieve 
atmospheric benefits (Mansuy et al., 2018). As such, dead 
trees that decompose at a faster rate, in warmer regions, 
may be seen as a better source of feedstock to increase 
greenhouse gas mitigation (Laganière et al., 2017).

5   |   CONCLUSIONS

In the context of global change, understanding and 
modeling broad-scale dynamics of wood degradation, 
with the goal to improve projections of their contribu-
tions to various ecological processes and global carbon 
cycle is an ongoing challenge. The objective of this 
meta-analysis was to review the effects of tree attributes 
and local climatic conditions on the time since death of 
coarse woody debris ranging in degradation levels. In 
the first place, an important contribution of this meta-
analysis is the development of a synthetic decay-class 
system that integrates the multiple classification used in 
the literature to classify deadwood decomposition state 
according to visual criteria. This standardized system 
should be prioritized in future investigations to allow 
direct comparisons between studies, which is a key to 
improve our understanding of the broad-scale dynam-
ics of tree degradation. In the second place, our analysis 
showed that projected warming will likely accelerate 
wood decomposition and significantly decrease the resi-
dence time in each decay stage. Because the impact of 
such dynamics on the biodiversity is still poorly un-
derstood, the development of locally explicit ecological 
thresholds in deadwood quantities necessary to ensure 
the maintenance of saproxylic species diversity should 
be a research priority. Moreover, while coarse woody de-
bris has been recognized as a key resource for bioenergy 
at the global scale (Chum et al., 2011), the acceleration 
of decay-stages transition dynamics indicates that the 
window of time to harvest dead trees targeted as feed-
stock will shrink. Consequently, future planning and 
implementation of salvage harvesting will need to occur 
within a short period following disturbance, especially 
in warmer regions dominated by hardwood species. As 
highlighted by Weedon et al. (2009), global climate-
vegetation models predicted an expansion of forest area 
dominated by hardwood species in many regions (IPCC, 
2007). These projections further highlight the need to de-
velop strategies allowing rapid planning and implemen-
tation of adaptive silvicultural treatments to succeed in 

increasing greenhouse gas mitigation. Finally, our liter-
ature survey emphases that the majority of the available 
information on wood decay comes from temperate and 
boreal forests of North America and Western Europe, 
whereas data from subtropical, equatorial, and subarctic 
forests are scarce. Such data are urgently needed to allow 
broader-scale conclusions (Weedon et al., 2009) and to 
produce representative carbon pools models capable of 
informing adaptive management strategies with respect 
to the global carbon cycle.
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