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Single photon lidar signal attenuation under boreal forest 
conditions
Liam Irwina, Nicholas C. Coops a, Martin Queinneca, Grant McCartneyb 
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aDepartment of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, 
Canada; bForest Information Systems, Rayonier Advanced Materials, Timmins, Ontario, Canada; cCanadian 
Forest Service (Pacific Forestry Centre), Natural Resources Canada, Victoria, British Columbia, Canada

ABSTRACT
Single-photon lidar (SPL100) is a recently commercialized airborne 
lidar system facilitating efficient wide-area acquisitions of high- 
density point clouds due to its capacity for higher altitude acquisi
tions compared to traditional linear-mode lidar (LML) systems. 
Increased acquisition efficiency and point densities make SPL100 
attractive for forest management applications. SPL100 utilizes 
532 nm (green wavelength) lasers, wherein there is reduced reflec
tance from vegetation, increased sensitivity to solar noise, and 
increased signal attenuation, which may impact the vertical distri
bution of SPL100 returns in forest canopies. We assessed SPL100 
data acquisitions over managed forests in north-eastern Ontario, 
Canada, using high-density unmanned aerial vehicle-borne laser 
scanning (ULS) data as reference over a range of forest conditions 
with variable vertical structure. Signal attenuation depth of indivi
dual SPL100 returns was estimated through a surface model nor
malization approach stratified by a ULS-derived structural index 
that compared densities of returns in the upper canopy to low 
vegetation and near ground. Canopy signal attenuation was closely 
matched in both systems, particularly in the upper canopy and near 
the ground surface; however, results showed a 31% reduction in the 
relative characterization of mid-canopy vegetation layers by SPL100 
under conditions identified by the structural index as closed 
canopy, compared to the ULS system.
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1. Introduction

The Leica SPL100 is a single-photon light detection and ranging (lidar) sensor that enables 
increased spatial coverage and higher point density products when compared to con
ventional linear mode lidar (LML) systems (Stoker et al. 2016; Swatantran et al. 2016). 
SPL100 utilizes a 10 × 10 array to split emitted laser pulses into 100 low-powered 
‘beamlets’. Returning beamlet photons are captured by a highly sensitive 10 × 10 array 
of detectors that are capable of recording returned energy from single photons. Unlike 
most vegetation and terrain focused LML systems that emit pulses of near-infrared 
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radiation (NIR), SPL100 utilizes 532 nm (green) wavelength lasers (Leica 2021). Green 
photons are more readily absorbed by photosynthetic foliar surfaces (e.g. leaves) than NIR; 
increasing signal attenuation, decreasing transmission through canopy layers and redu
cing the number and strength of return signals to the sensor (Hopkinson et al. 2016). 
These wavelengths are also vulnerable to effects of atmospheric scattering and solar noise 
(Wästlund et al. 2018; Degnan 2016). These differences have the potential to limit the 
ability of SPL100 pulses to penetrate certain dense vegetative cover configurations which 
may impact derivation of sub-canopy structure and accurate characterization of under
lying ground surfaces in forested areas compared to conventional LML systems (White 
et al. 2021a).

Herein we compare the lidar signal attenuation of a SPL100 sensor, to a small-footprint 
conventional NIR wavelength, LML system mounted on an unmanned aerial vehicle 
(hereafter referred to as ULS) with the aim to characterize boreal forest vertical foliage 
profiles under a variety of vertical forest conditions. To do so, we stratify vertical forest 
foliage profiles, derived from the ULS system, across a range of boreal forest structures. 
We utilize a lidar signal attenuation approach to approximate the effective penetrative 
capacity of each sensor across the sites with the aim of improving our understanding of 
how SPL100 quantifies lower canopy information, and subsequent implications for use of 
these data for forest management applications.

2. Methods

2.1. Study area

The northern boreal Romeo Malette forest (RMF) located in north eastern Ontario, is 
characterized by relatively flat terrain and a continental climate with long winters, and 
short summers. Common forest compositions include naturally regenerated stands fol
lowing harvest or natural disturbance composed of deciduous overstory species such as 
trembling aspen (Populous tremuloidis) and paper birch (Betula papyrifera), and mature; 
coniferous stands dominated by black spruce (Picea mariana), white spruce (Picea glauca), 
and eastern white cedar (Thuja occidentalis). Mixed wood multi-layer stands are charac
terized by dominant aspen overstories with understory layers of regenerating coniferous 
and deciduous species.

2.2. Ground plot composition

We established five representative 400 m2 circular plots (11.28 m radius) at the centre of 
each lidar acquisition across common forest structure and species compositions present 
in the RMF. Field technicians collected a range of tree attribute information for all trees 
exceeding a 7.1 cm diameter at breast height threshold (Table 1).

2.3. Lidar acquisitions

2.3.1. Single photon lidar (SPL100)
SPL100 data was acquired as part of a large-scale acquisition in summer of 2018, at 
a nominal altitude of 3660 m above ground level, with 50% overlap between flight 
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lines, at a pulse repetition frequency of 60 kHz, and a 30° field of view. These parameters 
resulted in an average return density of 44 points/m2. Solar noise was removed by the 
data provider following the approach detailed in Gluckman (2016).

2.3.2. UAV-borne laser scanning (ULS)
In order to provide a baseline reference of vertical forest structure from a high density 
conventional LML system, ULS acquisitions were conducted over the plots in August, 2019 
using a Phoenix AL3-32 system operating at 905 nm mounted on a DJI M600 Hexacopter 
UAV. Data was acquired at an altitude of 60 m above ground level ensuring at least 40% 
overlap between flight lines. ULS point density across the five areas of interest averaged 
1264 points/m2, totalling 9.44 hectares of lidar coverage.

2.4. Surface and canopy height model generation

Both SPL100 and ULS datasets were clipped to 80 m radius circles (20,000 m2) surrounding 
sample plot centres and, roads and right-of-way areas were masked. Ground returns were 
classified for both datasets using a cloth simulation filter algorithm, which was selected 
due to implementation simplicity and demonstrated accuracy (Zhang et al. 2016). Digital 
surface models (DSM) and canopy height models (CHM) were interpolated from absolute 
and ground normalized return elevations respectively using pit-free algorithms due to 
reliability in producing smooth surfaces from high density point clouds (Khosravipour 
et al. 2014). DSMs and CHMs were generated at a cell size of 0.5 m, which was selected to 
capture local variation in canopy height without exceeding the capabilities of the SPL100 
point density. All lidar point cloud processing steps in this letter were conducted using the 
lidR package in R (Roussel et al. 2020).

2.5. UAV-borne laser scanning vegetation structural index

To capture the variation in forest structure across the five sample areas, we derived 
a structural index (SI) from the ULS point clouds as a ratio of the return density (points/ 
m2) in the uppermost 25% of canopy height, and the lowest 25% of canopy height; 
derived in 1 m cells. We normalized this index by subtracting lower and upper canopy 
return densities on the numerator and summing density values on the denominator. Cells 
with negative values contained greater proportions of vegetation returns in the upper 
canopy relative to lower heights, which indicate areas with relatively dense upper 
canopies. Positive index values indicated areas where larger numbers of returns were 
produced from the lower portion of the forest’s vertical profile. Positive cells were then 
associated with vertical configurations consistent with more porous, open canopy areas 
and well-spaced trees. We classified resulting SI values in four equal intervals from −1 to 1. 

SI ¼
ðULS lower point density � ULS upper point densityÞ
ðULS lower point densityþ ULS upper point densityÞ

1052 L. IRWIN ET AL.



2.6. Lidar signal attenuation depth estimation and distributions

To approximate the lidar signal attenuation of individual returns, we adapted an approach 
by Véga et al. (2016,) whereby individual absolute point elevations were subtracted from 
corresponding 0.5 m DSM values at a given location, this produced an estimated depth 
value within the canopy for each return. In our case, point level signal attenuation depths 
were normalized as percentages of canopy height by dividing each return depth residual 
by the associated CHM value of the given cell, allowing for comparison across forested 
sites with varying canopy heights. Distributions of signal attenuation depth values were 
binned across 20 equal intervals from the top of the canopy (0%) to the ground surface 
(100%). By representing binned frequencies as a proportion of total returns we were able 
to relate SPL100 and ULS point clouds despite around a 25× difference in the number of 
ULS returns per square metre. Relative binned frequencies from both platforms were 
grouped by corresponding structural index classes (Figure 1 and 2).

3. Results

ULS and SPL100 point clouds along with normalized height metrics for each plot are 
shown on Figure 1. Upper canopy lidar height metrics were relatively consistent between 
platforms although ULS produced higher values for max elevation and upper percentile 
values (e.g. zmax, zq95, zq80) across plots. Internal canopy metrics (zq25, zq05) varied 
between platforms; most evident in the birch plot where SPL100 penetration was con
sidered to be most limited (Figure 1). In acquisition areas dominated by aspen, the ULS 
system produced larger proportions of returns from aspen stems potentially contributing 
to higher values for the 25th percentile of return heights in these plots. The open forest 
configuration plot dominated by black spruce showed greatest agreement between 
height metrics of both platforms.

3.1. Lidar signal attenuation depth distributions

Overall patterns across structural classes showed SPL100 consistently produced 
greater proportions of returns from the uppermost canopy depth bin with ULS returns 
more evenly distributed across mid-height bins. Trends reflect signal attenuation as 
well as actual vegetation structure present across canopy layers; differences in relative 
returns therefore allow for comparison between characterization by the two 
platforms.

Grid cells classified as open by the structural index (SI class 4) exhibited the greatest 
consistency in distributions of signal attenuation depth returns across the two platforms 
(Figure 2). A total of20.9% of SPL100 returns in these areas were recorded within the 
uppermost canopy height bin, whereas 10.9% of the total ULS returns were within this 
layer. In the mid-canopy layers (i.e. between 20–80% of canopy heights), the SPL100 data 
had between 3.0% and 4.7% of its total relative returns per bin. The ULS system produced 
an average of 16% greater proportion of returns within these mid-elevation bins relative 
to the SPL100 system. In the case of open structure, 32.7% of ULS returns were recorded 
from the lowest bins of the vertical foliage profile (80–100% of canopy height) compared 
to 27.3% of SPL returns.

REMOTE SENSING LETTERS 1053



The low-density structural class (SI class 3) had similar trends of agreement as the open 
class with SPL100 producing 26.7% of total returns from the uppermost bin of canopy 
depths relative to 20.0% by the ULS. 13.5% of ULS returns achieved depths between 5% 
and 20% of canopy height compared to SPL100 which produced 13.6% in these layers. 
Penetration to reveal mid-canopy structure (20–80% of CHM) was similar between 

Figure 1. Two-metre-wide cross-section visualization of five ground normalized point clouds corre
sponding to plot sample areas (400 m2) at centre of larger acquisitions. Individual ground normalized 
returns represented as points. Tables include lidar point cloud height metrics; maximum point 
elevation (zmax), 95th, 80th, 25th, and 5th quantile height values (zq95, zq80, zq25, zq05) as well 
as percentages of ground returns for plots from both platforms. ULS displayed on left, SPL100 on right.
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platforms in lower cover, with each depth bin containing between 4.5% and 2.6% of total 
returns for ULS and 4.2% and 2.3% for the SPL100. Both platforms had similar proportions 
of returns which fully penetrated canopy layers to produce returns from 90% to 100% 
depth of the canopy height: 25.1% for ULS and 23.8% for SPL100. Overall agreement 
between SPL100 and ULS was highest across penetration depths in the low-density and 
open structural classes.

In the intermediate dense structural class (SI class 2), 34.6% of SPL100 and 29.6% of ULS 
returns were recorded in the uppermost canopy height bin. The ULS system recorded 
40.6% of its returns within the upper canopy (5–20% of CHM) compared to only 31.3% 
from SPL100. ULS returns more readily achieved mid canopy penetration depths (20–80% 
of CHM) with between 3.5% and 1.8% of ULS total returns recorded across these 12 
penetration depth bins compare to SPL100 which had between 2.9% and 1.4% for the 
same interval. Penetration of lidar pulses to lower canopy depths (80–100%) was achieved 
by 22.2% of ULS returns in classified dense areas compared to 28.5% from SPL.

The closed density structural class (SI class 1) showed the greatest differences in ULS 
and SPL100 signal attenuation depth distributions as ULS returns were more evenly 
distributed across bins. Under closed structural conditions the greatest proportions of 

Figure 2. Relative distributions of lidar return signal attenuation depth values for SPL100 and ULS 
stratified by structural index class. SI class displayed in parentheses with range of included SI values in 
brackets. On the vertical axis, 0 indicates ‘top’ of canopy surface; with 100 indicating full penetration to 
the ground. Returns are binned in 5% intervals and displayed as relative proportions of total platform 
returns. Grey and black bars represent SPL100 and ULS platforms, respectively.

REMOTE SENSING LETTERS 1055



returns from both platforms achieved little penetration with 39.9% of SPL100 and 29.6% 
of ULS total returns occurring within the uppermost 5% of canopy height. ULS more 
readily penetrated this uppermost layer to produce 40.6% of total returns within subse
quent upper canopy bins (5–20% of CHM) relative to only 31.3% by the SPL100. Mid- 
canopy layers (20–80% of CHM) were more evenly characterized by ULS with each bin 
containing between 6.1% and 0.6% of total returns averaging 31% greater relative returns 
across these bins when compared to SPL100, which produced between 4.0% and 0.7% of 
total returns across these layers. Under closed conditions SPL100 did achieve full pene
tration (80–100% of CHM) for 11.0% of its returns compared to only 6.4% by the ULS.

4. Discussion

Researchers have already successfully applied SPL100 data to generate accurate 
enhanced forest inventories (EFI) using area-based approaches (Wästlund et al. 2018; Yu 
et al. 2020; White, Penner, and Woods 2021b). These approaches relate statistical proper
ties of lidar point clouds (e.g. metrics) with measured plot level forest attributes to predict 
properties at a grid level across areas of lidar coverage (Coops 2015). Yu et al. (2020) 
compared SPL100 and Titan LML derived point clouds, and found increased cover 
penetration capability by the LML sensor while still noting general agreement across 
lidar height metrics. Yu et al. (2020) also noted that the agreement between SPL100 and 
LML derived point cloud metrics was not perfect, recommending calibration between 
datasets prior to operational applications whereby SPL100 and LML data were combined 
or where area-based models would be transferred from one dataset to another. Leaf-on 
and leaf-off SPL100 data have also been assessed for their capacity to accurately char
acterize the terrain surface across a range of forest conditions, with results suggesting 
adequate levels of accuracy for forest management applications; however, the accuracy of 
elevation models was found to vary with both the composition and configuration of forest 
vegetation (White et al. 2021a). White et al. (2021a) noted that certain forest types were 
associated with reductions in elevation accuracy, particularly forest stands associated with 
standing water or saturated soils (treed wetlands, cedar) and stands that have dense 
understory vegetation above the ground surface (black spruce); similar compositions to 
plot stands visually appearing to have reduced SPL penetration in this study (Figure 1).

While area-based analyses (e.g. EFI) and terrain model generation have been 
proven effective with SPL100, potential disparities identified in the characterization 
of mid-elevation vegetation surfaces may become relevant as future efforts capita
lize on SPL100 data’s high point density for finer scale forestry applications. 
Successful segmentation of understory trees for example may require minimum 
point densities (e.g. 170 points/m2), which provide sufficient returns from lower 
canopy occluded trees to facilitate adequate differentiation from overstory vegeta
tion (Hamraz, Contreras, and Zhang 2017). Similar relationships have been demon
strated between increased point densities and accuracy in modelling field 
measured understory structure (Campbell et al. 2018). Our results indicate that 
under the highest density forest structure class; SPL100 produced 31% fewer 
relative returns between 20% and 80% of canopy height when compared to the 
ULS system. SPL100 point clouds under dense forest configurations may contain 
limited numbers of returns necessary for applications which require lower canopy 
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information such as prediction of crown base heights, wildfire fuels, wildlife habitat, 
and above-ground biomass. Further analysis with SPL100 data is required to exam
ine the potential impact of reduced penetration and sensor characteristics on the 
utility of SPL100 to estimate these attributes; especially under dense upper canopy 
configurations.

The driving factors behind observed differences in mid-canopy vegetation char
acterization are difficult to isolate as multiple factors including laser wavelength, 
sensor characteristics and post-processing may play a role. Hopkinson et al. (2016) 
assessed LML systems operated with both green and NIR lasers and noted that 
wavelength-dependent trends were observed including preferential sampling by 
the green laser of upper canopy regions, increased canopy attenuation, and reduced 
sampling of mid-height vegetation; these trends are consistent with the results from 
SPL100 reported herein. Mandlburger, Lehner, and Pfeifer (2019) visually compared 
the penetration capabilities of LML and SPL100 data in a forest context, concluding 
that LML achieved a greater pulse density and more ground returns. Mandlburger, 
Lehner, and Pfeifer (2019) also reported that the average number of returns per laser 
pulse was 1.84 for the LML compared to 1.06 for the SPL100; authors posited that 
aggressive noise filtering of the SPL100 data may have resulted in the removal of 
returns from the vegetation canopy.

While several authors have reported bias in the distribution of SPL returns 
towards the upper forest canopy (e.g. Li et al. 2016; Mandlburger, Lehner, and 
Pfeifer 2019), herein we demonstrate that there is similarity in the relative distribu
tions of ULS and SPL100 returns in the uppermost (0–20%) and lowest portions 
(80–100%) of the canopy. These results are consistent with those reported in Yu 
et al. (2020), where the SPL100 data were found to have relatively larger propor
tions of returns from the top of the canopy and from near the ground surface, with 
fewer returns in the mid-canopy. Quantifying penetration as a ratio of lidar returns 
≤2 m in height in to all returns, Yu et al. (2020) reported a strong level of 
agreement between SPL100 and LML data penetration ratios (R2 coefficient of 
determination = 0.98), with penetration being 5% greater for the SPL100 on 
average. Whereas LML systems operate at high photon detection thresholds to 
reduce the impact of solar noise during daytime operations, given the highly 
sensitive detectors used in SPL100, the impact of solar noise can be significant 
and necessitates extensive post-processing. As described in Degnan (2016) and 
Gluckman (2016), the general algorithmic approach to noise filtering is multi- 
stage and operates on vertical height intervals or bins. Given the proprietary nature 
of the noise filtering algorithms, the degree to which such post-processing 
approaches could potentially result in the loss of actual surface returns from within 
specific regions of the vertical canopy profile is difficult to determine (Mandlburger, 
Lehner, and Pfeifer 2019; Brown, Hartzell, and Glennie 2020). Quantifying the 
impact of the aforementioned potential drivers of observed SPL100 signal attenua
tion would require detailed examination of SPL100 point clouds before and after 
filtering is applied.

The capacity of SPL100 data for forest applications has been demonstrated in the 
literature and trade-offs associated with specific applications such as terrain characterization 
(Li et al. 2016; White et al. 2021a) and area-based forest inventories (Wästlund et al. 2018; 
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White, Penner, and Woods 2021b; Yu et al. 2020) have been quantified. SPL100 offers 
acquisition efficiencies, particularly for large forest management areas, that can be important 
for operational programmes. As SPL100 data become more widely available, a more fulsome 
understanding of the potential and limitations of SPL100 technology becomes possible. 
Despite potential caveats of SPL100 technology, the benefits may likely outweigh potential 
reductions in canopy penetration and mid-height returns under dense conditions. The 
increased sensitivity associated with the SPL100 enables higher acquisition altitudes when 
compared to traditional LML systems in turn allowing larger swaths, greater overlap between 
flight lines, and uniform parameters during acquisition (Swatantran et al. 2016). Increased 
return densities and acquisition efficiencies enabled by SPL100’s increased swath width 
compared to conventional lidar make it a desirable choice for future wide-area mapping 
efforts of forests with aerial lidar (Mandlburger, Lehner, and Pfeifer 2019; Yu et al. 2020).

5. Conclusion

Herein we demonstrated how a locally deployed ULS can provide valuable reference data 
to investigate and quantify the characteristics of nascent airborne systems deployed over 
large areas. Signal attenuation depth analyses allowed for the estimation of depth within 
canopy across tens of millions of lidar returns. Results indicated a decreased characteriza
tion of mid-canopy height vegetation by SPL100 relative to the LML sensor under the 
densest forest structural conditions.
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